These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Origin of the inertial deviation from Darcy's law: An investigation from a microscopic flow analysis on two-dimensional model structures. Agnaou M; Lasseux D; Ahmadi A Phys Rev E; 2017 Oct; 96(4-1):043105. PubMed ID: 29347623 [TBL] [Abstract][Full Text] [Related]
5. Dynamics and stability of two-potential flows in the porous media. Markicevic B; Bijeljic B; Navaz HK Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056324. PubMed ID: 22181515 [TBL] [Abstract][Full Text] [Related]
7. Pore geometry control of apparent wetting in porous media. Rabbani HS; Zhao B; Juanes R; Shokri N Sci Rep; 2018 Oct; 8(1):15729. PubMed ID: 30356141 [TBL] [Abstract][Full Text] [Related]
8. Measurement of off-diagonal transport coefficients in two-phase flow in porous media. Ramakrishnan TS; Goode PA J Colloid Interface Sci; 2015 Jul; 449():392-8. PubMed ID: 25748636 [TBL] [Abstract][Full Text] [Related]
9. A three-dimensional non-hydrostatic coupled model for free surface - Subsurface variable - Density flows. Shokri N; Namin MM; Farhoudi J J Contam Hydrol; 2018 Sep; 216():38-49. PubMed ID: 30126718 [TBL] [Abstract][Full Text] [Related]
10. Pore-scale investigation of viscous coupling effects for two-phase flow in porous media. Li H; Pan C; Miller CT Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026705. PubMed ID: 16196749 [TBL] [Abstract][Full Text] [Related]
11. Pore-scale visualization and characterization of viscous dissipation in porous media. Roman S; Soulaine C; Kovscek AR J Colloid Interface Sci; 2020 Jan; 558():269-279. PubMed ID: 31593860 [TBL] [Abstract][Full Text] [Related]
12. Porous micropillar structures for retaining low surface tension liquids. Agonafer DD; Lee H; Vasquez PA; Won Y; Jung KW; Lingamneni S; Ma B; Shan L; Shuai S; Du Z; Maitra T; Palko JW; Goodson KE J Colloid Interface Sci; 2018 Mar; 514():316-327. PubMed ID: 29275250 [TBL] [Abstract][Full Text] [Related]
13. A nonlinear multi-scale model for blood circulation in a realistic vascular system. Qohar UNA; Zanna Munthe-Kaas A; Nordbotten JM; Hanson EA R Soc Open Sci; 2021 Dec; 8(12):201949. PubMed ID: 34966547 [TBL] [Abstract][Full Text] [Related]
14. In-situ capillary pressure and wettability in natural porous media: Multi-scale experimentation and automated characterization using X-ray images. Zankoor A; Khishvand M; Mohamed A; Wang R; Piri M J Colloid Interface Sci; 2021 Dec; 603():356-369. PubMed ID: 34197985 [TBL] [Abstract][Full Text] [Related]
15. Capillary flows across layers and textural interfaces - Pathways and colloid transport considerations in unsaturated layered porous media. Hoogland F; Lehmann P; Or D J Colloid Interface Sci; 2017 Oct; 504():294-304. PubMed ID: 28551524 [TBL] [Abstract][Full Text] [Related]
16. Lucas-Washburn Equation-Based Modeling of Capillary-Driven Flow in Porous Systems. Cai J; Jin T; Kou J; Zou S; Xiao J; Meng Q Langmuir; 2021 Feb; 37(5):1623-1636. PubMed ID: 33512167 [TBL] [Abstract][Full Text] [Related]
17. Analysis and improvement of Brinkman lattice Boltzmann schemes: bulk, boundary, interface. Similarity and distinctness with finite elements in heterogeneous porous media. Ginzburg I; Silva G; Talon L Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023307. PubMed ID: 25768636 [TBL] [Abstract][Full Text] [Related]
19. Generalization of Darcy's law for Bingham fluids in porous media: from flow-field statistics to the flow-rate regimes. Chevalier T; Talon L Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023011. PubMed ID: 25768601 [TBL] [Abstract][Full Text] [Related]
20. Study on Flow Characteristics of Working Medium in Microchannel Simulated by Porous Media Model. Xue Y; Guo C; Gu X; Xu Y; Xue L; Lin H Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33375336 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]