These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30594833)

  • 41. Experimental, Theoretical, and Numerical Investigation of the Electric Field and Surface Wettability Effects on the Penetration Length in Capillary Flow.
    Ul Hassan R; Lee J; Khalil SM; Kang G; Cho DH; Byun D
    ACS Omega; 2021 Dec; 6(48):32773-32782. PubMed ID: 34901626
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Flow control by circular cavities in lateral flow porous membranes.
    Jamil SR; Abbasi MS; Jafry AT; Shahzad T; Sarwar S; Qureshi MH
    Sci Prog; 2024; 107(1):368504241235508. PubMed ID: 38426804
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Numerical simulation of blood and interstitial flow through a solid tumor.
    Pozrikidis C
    J Math Biol; 2010 Jan; 60(1):75-94. PubMed ID: 19277663
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Finite volume hydromechanical simulation in porous media.
    Nordbotten JM
    Water Resour Res; 2014 May; 50(5):4379-4394. PubMed ID: 25574061
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact of Lorentz force on the pulsatile flow of a non-Newtonian Casson fluid in a constricted channel using Darcy's law: a numerical study.
    Ali A; Farooq H; Abbas Z; Bukhari Z; Fatima A
    Sci Rep; 2020 Jun; 10(1):10629. PubMed ID: 32606348
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unified Modeling Framework for Thin-Film Evaporation from Micropillar Arrays Capturing Local Interfacial Effects.
    Wang R; Jakhar K; Antao DS
    Langmuir; 2019 Oct; 35(40):12927-12935. PubMed ID: 31525296
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Linear stability analysis and nonlinear simulations of convective dissolution in an inclined porous layer between impermeable surfaces.
    Lucena RM; Pontes J; De Wit A; Anjos GR; Mangiavacchi N
    Chaos; 2022 Nov; 32(11):113110. PubMed ID: 36456309
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Unified lattice Boltzmann method for flow in multiscale porous media.
    Kang Q; Zhang D; Chen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056307. PubMed ID: 12513596
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Drainage in two-dimensional porous media: from capillary fingering to viscous flow.
    Cottin C; Bodiguel H; Colin A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046315. PubMed ID: 21230398
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of a coupled model for numerical simulation of a multiphase flow system in a porous medium and a surface fluid.
    Hibi Y; Tomigashi A
    J Contam Hydrol; 2015 Sep; 180():34-55. PubMed ID: 26255905
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Absorption of surfactant-laden droplets into porous media: A numerical study.
    van Gaalen RT; Diddens C; Siregar DP; Wijshoff HMA; Kuerten JGM
    J Colloid Interface Sci; 2021 Sep; 597():149-159. PubMed ID: 33866208
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lattice Boltzmann model for incompressible flows through porous media.
    Guo Z; Zhao TS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036304. PubMed ID: 12366250
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of the use of capillary numbers for quantifying the removal of DNAPL trapped in a porous medium by surfactant and surfactant foam floods.
    Jeong SW
    J Colloid Interface Sci; 2005 Feb; 282(1):182-7. PubMed ID: 15576097
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Two-phase flow in a chemically active porous medium.
    Darmon A; Benzaquen M; Salez T; Dauchot O
    J Chem Phys; 2014 Dec; 141(24):244704. PubMed ID: 25554172
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reactive transport in porous media: pore-network model approach compared to pore-scale model.
    Varloteaux C; Vu MT; Békri S; Adler PM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023010. PubMed ID: 23496613
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pore-scale statistics of flow and transport through porous media.
    Aramideh S; Vlachos PP; Ardekani AM
    Phys Rev E; 2018 Jul; 98(1-1):013104. PubMed ID: 30110739
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamic control of capillary flow in porous media by electroosmotic pumping.
    Rosenfeld T; Bercovici M
    Lab Chip; 2019 Jan; 19(2):328-334. PubMed ID: 30566158
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Drying patterns of porous media containing wettability contrasts.
    Shokri N; Or D
    J Colloid Interface Sci; 2013 Feb; 391():135-41. PubMed ID: 23123032
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determination of the mass-transport properties of vanadium ions through the porous electrodes of vanadium redox flow batteries.
    Xu Q; Zhao TS
    Phys Chem Chem Phys; 2013 Jul; 15(26):10841-8. PubMed ID: 23698744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.