These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30594890)

  • 1. A novel photosensitive dual-sensor for simultaneous detection of nucleic acids and small chemical molecules.
    Wang J; Cui X; Zhu J; Tan L; Dong L
    Biosens Bioelectron; 2019 Feb; 127():108-117. PubMed ID: 30594890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real time monitoring of the interaction of T7 RNA polymerase with azobenzene-tethered T7 promoter by biosensor.
    Liu M; Asanuma H; Komiyama M
    Nucleic Acids Symp Ser (Oxf); 2004; (48):221-2. PubMed ID: 17150558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Azobenzene-tethered T7 promoter for efficient photoregulation of transcription.
    Liu M; Asanuma H; Komiyama M
    J Am Chem Soc; 2006 Jan; 128(3):1009-15. PubMed ID: 16417393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription.
    Asanuma H; Liang X; Nishioka H; Matsunaga D; Liu M; Komiyama M
    Nat Protoc; 2007; 2(1):203-12. PubMed ID: 17401355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence characterization of the transcription bubble in elongation complexes of T7 RNA polymerase.
    Liu C; Martin CT
    J Mol Biol; 2001 May; 308(3):465-75. PubMed ID: 11327781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toehold-Mediated Strand Displacement in a Triplex Forming Nucleic Acid Clamp for Reversible Regulation of Polymerase Activity and Protein Expression.
    Nguyen TJD; Manuguerra I; Kumar V; Gothelf KV
    Chemistry; 2019 Sep; 25(53):12303-12307. PubMed ID: 31373735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A DNA Bubble-Mediated Gene Regulation System Based on Thrombin-Bound DNA Aptamers.
    Wang J; Yang L; Cui X; Zhang Z; Dong L; Guan N
    ACS Synth Biol; 2017 May; 6(5):758-765. PubMed ID: 28147483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel molecular beacon-based method for isothermal detection of sequence-specific DNA via T7 RNA polymerase-aided target regeneration.
    Yin BC; Wu S; Ma JL; Ye BC
    Biosens Bioelectron; 2015 Jun; 68():365-370. PubMed ID: 25613814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional architecture of T7 RNA polymerase transcription complexes.
    Nayak D; Guo Q; Sousa R
    J Mol Biol; 2007 Aug; 371(2):490-500. PubMed ID: 17580086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic gene involving azobenzene-tethered T7 promoter for the photocontrol of gene expression by visible light.
    Kamiya Y; Takagi T; Ooi H; Ito H; Liang X; Asanuma H
    ACS Synth Biol; 2015 Apr; 4(4):365-70. PubMed ID: 25144622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural confirmation of a bent and open model for the initiation complex of T7 RNA polymerase.
    Turingan RS; Liu C; Hawkins ME; Martin CT
    Biochemistry; 2007 Feb; 46(7):1714-23. PubMed ID: 17253774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The intercalating beta-hairpin of T7 RNA polymerase plays a role in promoter DNA melting and in stabilizing the melted DNA for efficient RNA synthesis.
    Stano NM; Patel SS
    J Mol Biol; 2002 Feb; 315(5):1009-25. PubMed ID: 11827472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study of elongation complexes for T7 RNA polymerase].
    Limanskaia OIu; Limanskiĭ AP
    Biofizika; 2012; 57(4):573-88. PubMed ID: 23035523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping the conformation of the nucleic acid framework of the T7 RNA polymerase elongation complex in solution using low-energy CD and fluorescence spectroscopy.
    Datta K; Johnson NP; von Hippel PH
    J Mol Biol; 2006 Jul; 360(4):800-13. PubMed ID: 16784751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the interaction of T7 RNA polymerase with promoter.
    Sastry S; Ross BM
    Biochemistry; 1999 Apr; 38(16):4972-81. PubMed ID: 10213599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel mode for transcription inhibition mediated by PNA-induced R-loops with a model in vitro system.
    D'Souza AD; Belotserkovskii BP; Hanawalt PC
    Biochim Biophys Acta Gene Regul Mech; 2018 Feb; 1861(2):158-166. PubMed ID: 29357316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel sensing platform using aptamer and RNA polymerase-based amplification for detection of cancer cells.
    Zhao J; Zhang L; Chen C; Jiang J; Yu R
    Anal Chim Acta; 2012 Oct; 745():106-11. PubMed ID: 22938613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of nucleic acids by azobenzene derivatives and their applications in biotechnology and nanotechnology.
    Li J; Wang X; Liang X
    Chem Asian J; 2014 Dec; 9(12):3344-58. PubMed ID: 25236334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel RNA aptamer-modified riboswitch as chemical sensor.
    Wang J; Yang D; Guo X; Song Q; Tan L; Dong L
    Anal Chim Acta; 2020 Mar; 1100():240-249. PubMed ID: 31987147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleic acid aptamers and enzymes as sensors.
    Navani NK; Li Y
    Curr Opin Chem Biol; 2006 Jun; 10(3):272-81. PubMed ID: 16678470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.