BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

29 related articles for article (PubMed ID: 30595466)

  • 1. SEEI: spherical evolution with feedback mechanism for identifying epistatic interactions.
    Tang DY; Mao YJ; Zhao J; Yang J; Li SY; Ren FX; Zheng J
    BMC Genomics; 2024 May; 25(1):462. PubMed ID: 38735952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying frequency-dependent imaging genetic associations via hypergraph-structured multi-task sparse canonical correlation analysis.
    Song P; Li X; Yuan X; Pang L; Song X; Wang Y
    Comput Biol Med; 2024 Mar; 171():108051. PubMed ID: 38335819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facilitating Anti-Cancer Combinatorial Drug Discovery by Targeting Epistatic Disease Genes.
    Quan Y; Liu MY; Liu YM; Zhu LD; Wu YS; Luo ZH; Zhang XZ; Xu SZ; Yang QY; Zhang HY
    Molecules; 2018 Mar; 23(4):. PubMed ID: 29570606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring modulators of genetic interactions with epistatic nested effects models.
    Pirkl M; Diekmann M; van der Wees M; Beerenwinkel N; Fröhlich H; Markowetz F
    PLoS Comput Biol; 2017 Apr; 13(4):e1005496. PubMed ID: 28406896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of influential proteins and enzymes of certain diseases using a directed unimodular hypergraph.
    Gopalakrishnan S; Venkatraman S
    Math Biosci Eng; 2024 Jan; 21(1):325-345. PubMed ID: 38303425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network medicine-based epistasis detection in complex diseases: ready for quantum computing.
    Hoffmann M; Poschenrieder JM; Incudini M; Baier S; Fitz A; Maier A; Hartung M; Hoffmann C; Trummer N; Adamowicz K; Picciani M; Scheibling E; Harl MV; Lesch I; Frey H; Kayser S; Wissenberg P; Schwartz L; Hafner L; Acharya A; Hackl L; Grabert G; Lee SG; Cho G; Cloward M; Jankowski J; Lee HK; Tsoy O; Wenke N; Pedersen AG; Bønnelykke K; Mandarino A; Melograna F; Schulz L; Climente-González H; Wilhelm M; Iapichino L; Wienbrandt L; Ellinghaus D; Van Steen K; Grossi M; Furth PA; Hennighausen L; Di Pierro A; Baumbach J; Kacprowski T; List M; Blumenthal DB
    medRxiv; 2023 Nov; ():. PubMed ID: 38076997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Community detection in hypergraphs via mutual information maximization.
    Kritschgau J; Kaiser D; Alvarado Rodriguez O; Amburg I; Bolkema J; Grubb T; Lan F; Maleki S; Chodrow P; Kay B
    Sci Rep; 2024 Mar; 14(1):6933. PubMed ID: 38521798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inference of dynamic hypergraph representations in temporal interaction data.
    Kirkley A
    Phys Rev E; 2024 May; 109(5-1):054306. PubMed ID: 38907453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finding a Maximum Common Subgraph from Molecular Structural Formulas through the Maximum Clique Approach Combined with the Ising Model.
    Okamoto Y
    ACS Omega; 2020 Jun; 5(22):13064-13068. PubMed ID: 32548491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalizing Design of Support Measures for Counting Frequent Patterns in Graphs.
    Meng J; Pitaksirianan N; Tu Y
    Proc IEEE Int Conf Big Data; 2019 Dec; 2019():533-542. PubMed ID: 38323298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of Concern: Epistatic interactions between PHOTOPERIOD1, CONSTANS1 and CONSTANS2 modulate the photoperiodic response in wheat.
    PLOS Genetics Editors
    PLoS Genet; 2023 Dec; 19(12):e1011097. PubMed ID: 38117786
    [No Abstract]   [Full Text] [Related]  

  • 12. NMFNA: A Non-negative Matrix Factorization Network Analysis Method for Identifying Modules and Characteristic Genes of Pancreatic Cancer.
    Ding Q; Sun Y; Shang J; Li F; Zhang Y; Liu JX
    Front Genet; 2021; 12():678642. PubMed ID: 34367241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HC-HDSD: A method of hypergraph construction and high-density subgraph detection for inferring high-order epistatic interactions.
    Ding Q; Shang J; Sun Y; Wang X; Liu JX
    Comput Biol Chem; 2019 Feb; 78():440-447. PubMed ID: 30595466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CINOEDV: a co-information based method for detecting and visualizing n-order epistatic interactions.
    Shang J; Sun Y; Liu JX; Xia J; Zhang J; Zheng CH
    BMC Bioinformatics; 2016 May; 17(1):214. PubMed ID: 27184783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast detection of high-order epistatic interactions in genome-wide association studies using information theoretic measure.
    Leem S; Jeong HH; Lee J; Wee K; Sohn KA
    Comput Biol Chem; 2014 Jun; 50():19-28. PubMed ID: 24581733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EpiMC: Detecting Epistatic Interactions Using Multiple Clusterings.
    Wang J; Zhang H; Ren W; Guo M; Yu G
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):243-254. PubMed ID: 33989157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting purely epistatic multi-locus interactions by an omnibus permutation test on ensembles of two-locus analyses.
    Wongseree W; Assawamakin A; Piroonratana T; Sinsomros S; Limwongse C; Chaiyaratana N
    BMC Bioinformatics; 2009 Sep; 10():294. PubMed ID: 19761607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Advances in development of gene-gene interaction analysis methods based on SNP data: a review].
    Luan YZ; Zuo XY; Liu K; Li G; Rao SQ
    Yi Chuan; 2013 Dec; 35(12):1331-9. PubMed ID: 24645342
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.