These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30595981)

  • 1. The feasibility of predicting ground reaction forces during running from a trunk accelerometry driven mass-spring-damper model.
    Nedergaard NJ; Verheul J; Drust B; Etchells T; Lisboa P; Robinson MA; Vanrenterghem J
    PeerJ; 2018; 6():e6105. PubMed ID: 30595981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical loading during running: can a two mass-spring-damper model be used to evaluate ground reaction forces for high-intensity tasks?
    Verheul J; Nedergaard NJ; Pogson M; Lisboa P; Gregson W; Vanrenterghem J; Robinson MA
    Sports Biomech; 2021 Aug; 20(5):571-582. PubMed ID: 31033415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting continuous ground reaction forces from accelerometers during uphill and downhill running: a recurrent neural network solution.
    Alcantara RS; Edwards WB; Millet GY; Grabowski AM
    PeerJ; 2022; 10():e12752. PubMed ID: 35036107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Relationship Between Whole-Body External Loading and Body-Worn Accelerometry During Team-Sport Movements.
    Nedergaard NJ; Robinson MA; Eusterwiemann E; Drust B; Lisboa PJ; Vanrenterghem J
    Int J Sports Physiol Perform; 2017 Jan; 12(1):18-26. PubMed ID: 27002795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sacral acceleration can predict whole-body kinetics and stride kinematics across running speeds.
    Alcantara RS; Day EM; Hahn ME; Grabowski AM
    PeerJ; 2021; 9():e11199. PubMed ID: 33954039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-body biomechanical load in running-based sports: The validity of estimating ground reaction forces from segmental accelerations.
    Verheul J; Gregson W; Lisboa P; Vanrenterghem J; Robinson MA
    J Sci Med Sport; 2019 Jun; 22(6):716-722. PubMed ID: 30594457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neural network method to predict task- and step-specific ground reaction force magnitudes from trunk accelerations during running activities.
    Pogson M; Verheul J; Robinson MA; Vanrenterghem J; Lisboa P
    Med Eng Phys; 2020 Apr; 78():82-89. PubMed ID: 32115354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validity of an upper-body-mounted accelerometer to measure peak vertical and resultant force during running and change-of-direction tasks.
    Wundersitz DW; Netto KJ; Aisbett B; Gastin PB
    Sports Biomech; 2013 Nov; 12(4):403-12. PubMed ID: 24466652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical loading prediction through accelerometry data during walking and running.
    Veras L; Diniz-Sousa F; Boppre G; Resende-Coelho A; Moutinho-Ribeiro E; Devezas V; Santos-Sousa H; Preto J; Vilas-Boas JP; Machado L; Oliveira J; Fonseca H
    Eur J Sport Sci; 2023 Aug; 23(8):1518-1527. PubMed ID: 35838070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.
    Jung Y; Jung M; Ryu J; Yoon S; Park SK; Koo S
    Gait Posture; 2016 Mar; 45():62-8. PubMed ID: 26979885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of a Torso-Mounted Accelerometer for Measures of Vertical Oscillation and Ground Contact Time During Treadmill Running.
    Watari R; Hettinga B; Osis S; Ferber R
    J Appl Biomech; 2016 Jun; 32(3):306-10. PubMed ID: 26695636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying generalised segmental acceleration patterns that contribute to ground reaction force features across different running tasks.
    Verheul J; Warmenhoven J; Lisboa P; Gregson W; Vanrenterghem J; Robinson MA
    J Sci Med Sport; 2019 Dec; 22(12):1355-1360. PubMed ID: 31445948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerometer-based prediction of skeletal mechanical loading during walking in normal weight to severely obese subjects.
    Veras L; Diniz-Sousa F; Boppre G; Devezas V; Santos-Sousa H; Preto J; Vilas-Boas JP; Machado L; Oliveira J; Fonseca H
    Osteoporos Int; 2020 Jul; 31(7):1239-1250. PubMed ID: 31965217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-specific Concurrent Validity of the ActiGraph GT9X Link in the Estimation of Activity-related Skeletal Loading.
    Higgins S; Higgins LQ; Vallabhajosula S
    Med Sci Sports Exerc; 2021 May; 53(5):951-959. PubMed ID: 33170820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general relationship links gait mechanics and running ground reaction forces.
    Clark KP; Ryan LJ; Weyand PG
    J Exp Biol; 2017 Jan; 220(Pt 2):247-258. PubMed ID: 27811299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy cost of running instability evaluated with wearable trunk accelerometry.
    Schütte KH; Sackey S; Venter R; Vanwanseele B
    J Appl Physiol (1985); 2018 Feb; 124(2):462-472. PubMed ID: 28751372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Ground Reaction Force from a Hip-Borne Accelerometer during Load Carriage.
    Neugebauer JM; Lafiandra M
    Med Sci Sports Exerc; 2018 Nov; 50(11):2369-2374. PubMed ID: 29889819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multidimensional Ground Reaction Forces and Moments From Wearable Sensor Accelerations via Deep Learning.
    Johnson WR; Mian A; Robinson MA; Verheul J; Lloyd DG; Alderson JA
    IEEE Trans Biomed Eng; 2021 Jan; 68(1):289-297. PubMed ID: 32746046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of accelerometry to classify activity beneficial to bone in premenopausal women.
    Stiles VH; Griew PJ; Rowlands AV
    Med Sci Sports Exerc; 2013 Dec; 45(12):2353-61. PubMed ID: 23698245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous estimation of ground reaction force during long distance running within a fatigue monitoring framework: A Kalman filter-based model-data fusion approach.
    LeBlanc B; Hernandez EM; McGinnis RS; Gurchiek RD
    J Biomech; 2021 Jan; 115():110130. PubMed ID: 33257007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.