These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 30596374)

  • 1. Spinal Shox2 interneuron interconnectivity related to function and development.
    Ha NT; Dougherty KJ
    Elife; 2018 Dec; 7():. PubMed ID: 30596374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locomotor rhythm generation linked to the output of spinal shox2 excitatory interneurons.
    Dougherty KJ; Zagoraiou L; Satoh D; Rozani I; Doobar S; Arber S; Jessell TM; Kiehn O
    Neuron; 2013 Nov; 80(4):920-33. PubMed ID: 24267650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal Hb9::Cre-derived excitatory interneurons contribute to rhythm generation in the mouse.
    Caldeira V; Dougherty KJ; Borgius L; Kiehn O
    Sci Rep; 2017 Jan; 7():41369. PubMed ID: 28128321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural Interactions in Developing Rhythmogenic Spinal Networks: Insights From Computational Modeling.
    Shevtsova NA; Ha NT; Rybak IA; Dougherty KJ
    Front Neural Circuits; 2020; 14():614615. PubMed ID: 33424558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical coupling between locomotor-related excitatory interneurons in the mammalian spinal cord.
    Hinckley CA; Ziskind-Conhaim L
    J Neurosci; 2006 Aug; 26(33):8477-83. PubMed ID: 16914672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitatory Spinal Lhx9-Derived Interneurons Modulate Locomotor Frequency in Mice.
    Bertho M; Caldeira V; Hsu LJ; Löw P; Borgius L; Kiehn O
    J Neurosci; 2024 May; 44(18):. PubMed ID: 38438260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of adult spinal Shox2 neuronal subpopulations based on unbiased computational clustering of electrophysiological properties.
    Garcia-Ramirez DL; Singh S; McGrath JR; Ha NT; Dougherty KJ
    Front Neural Circuits; 2022; 16():957084. PubMed ID: 35991345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous electrotonic coupling and synchronization of rhythmic bursting activity in mouse Hb9 interneurons.
    Wilson JM; Cowan AI; Brownstone RM
    J Neurophysiol; 2007 Oct; 98(4):2370-81. PubMed ID: 17715199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal Cord Injury Alters Spinal Shox2 Interneurons by Enhancing Excitatory Synaptic Input and Serotonergic Modulation While Maintaining Intrinsic Properties in Mouse.
    Garcia-Ramirez DL; Ha NT; Bibu S; Stachowski NJ; Dougherty KJ
    J Neurosci; 2021 Jul; 41(27):5833-5848. PubMed ID: 34006587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexor and Extensor Ankle Afferents Broadly Innervate Locomotor Spinal Shox2 Neurons and Induce Similar Effects in Neonatal Mice.
    Li EZ; Garcia-Ramirez DL; Dougherty KJ
    Front Cell Neurosci; 2019; 13():452. PubMed ID: 31649510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local dynamics of gap-junction-coupled interneuron networks.
    Lau T; Gage GJ; Berke JD; Zochowski M
    Phys Biol; 2010 Mar; 7():16015. PubMed ID: 20228446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical coupling regulates layer 1 interneuron microcircuit formation in the neocortex.
    Yao XH; Wang M; He XN; He F; Zhang SQ; Lu W; Qiu ZL; Yu YC
    Nat Commun; 2016 Aug; 7():12229. PubMed ID: 27510304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional distribution of putative rhythm-generating and pattern-forming components of the mammalian locomotor CPG.
    Griener A; Dyck J; Gosgnach S
    Neuroscience; 2013 Oct; 250():644-50. PubMed ID: 23933310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetic Activation of V1 Interneurons Reveals the Multimodality of Spinal Locomotor Networks in the Neonatal Mouse.
    Falgairolle M; O'Donovan MJ
    J Neurosci; 2021 Oct; 41(41):8545-8561. PubMed ID: 34446573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing diversity within subpopulations of locomotor-related V0 interneurons.
    Griener A; Zhang W; Kao H; Wagner C; Gosgnach S
    Dev Neurobiol; 2015 Nov; 75(11):1189-203. PubMed ID: 25649879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dorsally derived spinal interneurons in locomotor circuits.
    Vallstedt A; Kullander K
    Ann N Y Acad Sci; 2013 Mar; 1279():32-42. PubMed ID: 23531000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal correlates of the dominant role of GABAergic transmission in the developing mouse locomotor circuitry.
    Ziskind-Conhaim L
    Ann N Y Acad Sci; 2013 Mar; 1279():43-53. PubMed ID: 23531001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anatomical and electrophysiological characterization of a population of dI6 interneurons in the neonatal mouse spinal cord.
    Griener A; Zhang W; Kao H; Haque F; Gosgnach S
    Neuroscience; 2017 Oct; 362():47-59. PubMed ID: 28844009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locomotor-like rhythms in a genetically distinct cluster of interneurons in the mammalian spinal cord.
    Hinckley CA; Hartley R; Wu L; Todd A; Ziskind-Conhaim L
    J Neurophysiol; 2005 Mar; 93(3):1439-49. PubMed ID: 15496486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topographical and physiological characterization of interneurons that express engrailed-1 in the embryonic chick spinal cord.
    Wenner P; O'Donovan MJ; Matise MP
    J Neurophysiol; 2000 Nov; 84(5):2651-7. PubMed ID: 11068006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.