These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30596374)

  • 41. Structured connectivity in cerebellar inhibitory networks.
    Rieubland S; Roth A; Häusser M
    Neuron; 2014 Feb; 81(4):913-29. PubMed ID: 24559679
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Glycine receptors regulate interneuron differentiation during spinal network development.
    McDearmid JR; Liao M; Drapeau P
    Proc Natl Acad Sci U S A; 2006 Jun; 103(25):9679-84. PubMed ID: 16763051
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks.
    Tråvén HG; Brodin L; Lansner A; Ekeberg O; Wallén P; Grillner S
    J Neurophysiol; 1993 Aug; 70(2):695-709. PubMed ID: 8105036
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Diversity of molecularly defined spinal interneurons engaged in mammalian locomotor pattern generation.
    Ziskind-Conhaim L; Hochman S
    J Neurophysiol; 2017 Dec; 118(6):2956-2974. PubMed ID: 28855288
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional Properties of Dendritic Gap Junctions in Cerebellar Golgi Cells.
    Szoboszlay M; Lőrincz A; Lanore F; Vervaeke K; Silver RA; Nusser Z
    Neuron; 2016 Jun; 90(5):1043-56. PubMed ID: 27133465
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Organization of left-right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling.
    Shevtsova NA; Talpalar AE; Markin SN; Harris-Warrick RM; Kiehn O; Rybak IA
    J Physiol; 2015 Jun; 593(11):2403-26. PubMed ID: 25820677
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Conditional rhythmicity of ventral spinal interneurons defined by expression of the Hb9 homeodomain protein.
    Wilson JM; Hartley R; Maxwell DJ; Todd AJ; Lieberam I; Kaltschmidt JA; Yoshida Y; Jessell TM; Brownstone RM
    J Neurosci; 2005 Jun; 25(24):5710-9. PubMed ID: 15958737
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modulatory and plastic effects of kinins on spinal cord networks.
    Mandadi S; Leduc-Pessah H; Hong P; Ejdrygiewicz J; Sharples SA; Trang T; Whelan PJ
    J Physiol; 2016 Feb; 594(4):1017-36. PubMed ID: 26634895
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Elimination of glutamatergic transmission from Hb9 interneurons does not impact treadmill locomotion.
    Koronfel LM; Kanning KC; Alcos A; Henderson CE; Brownstone RM
    Sci Rep; 2021 Aug; 11(1):16008. PubMed ID: 34362940
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Activity-dependent changes in extracellular Ca2+ and K+ reveal pacemakers in the spinal locomotor-related network.
    Brocard F; Shevtsova NA; Bouhadfane M; Tazerart S; Heinemann U; Rybak IA; Vinay L
    Neuron; 2013 Mar; 77(6):1047-54. PubMed ID: 23522041
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Early-generated interneurons regulate neuronal circuit formation during early postnatal development.
    Wang CZ; Ma J; Xu YQ; Jiang SN; Chen TQ; Yuan ZL; Mao XY; Zhang SQ; Liu LY; Fu Y; Yu YC
    Elife; 2019 May; 8():. PubMed ID: 31120418
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparative Connectomics Reveals How Partner Identity, Location, and Activity Specify Synaptic Connectivity in Drosophila.
    Valdes-Aleman J; Fetter RD; Sales EC; Heckman EL; Venkatasubramanian L; Doe CQ; Landgraf M; Cardona A; Zlatic M
    Neuron; 2021 Jan; 109(1):105-122.e7. PubMed ID: 33120017
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spinal Interneurons: Diversity and Connectivity in Motor Control.
    Sengupta M; Bagnall MW
    Annu Rev Neurosci; 2023 Jul; 46():79-99. PubMed ID: 36854318
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Diverse roles and modulations of I
    Clerc N; Moqrich A
    Cell Rep; 2022 Mar; 38(13):110588. PubMed ID: 35354022
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differential expression of synaptic and interneuron genes in the aging human prefrontal cortex.
    Mohan A; Thalamuthu A; Mather KA; Zhang Y; Catts VS; Weickert CS; Sachdev PS
    Neurobiol Aging; 2018 Oct; 70():194-202. PubMed ID: 30031232
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diversified physiological sensory input connectivity questions the existence of distinct classes of spinal interneurons.
    Kohler M; Bengtsson F; Stratmann P; Röhrbein F; Knoll A; Albu-Schäffer A; Jörntell H
    iScience; 2022 Apr; 25(4):104083. PubMed ID: 35372805
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spinal Interneurons "à La Carte".
    Alvarez FJ
    Neuron; 2018 Oct; 100(1):3-6. PubMed ID: 30308170
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Locomotor-related V3 interneurons initiate and coordinate muscles spasms after spinal cord injury.
    Lin S; Li Y; Lucas-Osma AM; Hari K; Stephens MJ; Singla R; Heckman CJ; Zhang Y; Fouad K; Fenrich KK; Bennett DJ
    J Neurophysiol; 2019 Apr; 121(4):1352-1367. PubMed ID: 30625014
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Computational modeling of brainstem circuits controlling locomotor frequency and gait.
    Ausborn J; Shevtsova NA; Caggiano V; Danner SM; Rybak IA
    Elife; 2019 Jan; 8():. PubMed ID: 30663578
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The rhythm section: An update on spinal interneurons setting the beat for mammalian locomotion.
    Dougherty KJ; Ha NT
    Curr Opin Physiol; 2019 Apr; 8():84-93. PubMed ID: 31179403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.