These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30596374)

  • 81. Breathing matters.
    Del Negro CA; Funk GD; Feldman JL
    Nat Rev Neurosci; 2018 Jun; 19(6):351-367. PubMed ID: 29740175
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Organization of the core respiratory network: Insights from optogenetic and modeling studies.
    Ausborn J; Koizumi H; Barnett WH; John TT; Zhang R; Molkov YI; Smith JC; Rybak IA
    PLoS Comput Biol; 2018 Apr; 14(4):e1006148. PubMed ID: 29698394
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Graded Arrays of Spinal and Supraspinal V2a Interneuron Subtypes Underlie Forelimb and Hindlimb Motor Control.
    Hayashi M; Hinckley CA; Driscoll SP; Moore NJ; Levine AJ; Hilde KL; Sharma K; Pfaff SL
    Neuron; 2018 Feb; 97(4):869-884.e5. PubMed ID: 29398364
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Diversity of molecularly defined spinal interneurons engaged in mammalian locomotor pattern generation.
    Ziskind-Conhaim L; Hochman S
    J Neurophysiol; 2017 Dec; 118(6):2956-2974. PubMed ID: 28855288
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Motoneurons regulate the central pattern generator during drug-induced locomotor-like activity in the neonatal mouse.
    Falgairolle M; Puhl JG; Pujala A; Liu W; O'Donovan MJ
    Elife; 2017 Jul; 6():. PubMed ID: 28671548
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Spinal Hb9::Cre-derived excitatory interneurons contribute to rhythm generation in the mouse.
    Caldeira V; Dougherty KJ; Borgius L; Kiehn O
    Sci Rep; 2017 Jan; 7():41369. PubMed ID: 28128321
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Complicating connectomes: Electrical coupling creates parallel pathways and degenerate circuit mechanisms.
    Marder E; Gutierrez GJ; Nusbaum MP
    Dev Neurobiol; 2017 May; 77(5):597-609. PubMed ID: 27314561
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Organization of flexor-extensor interactions in the mammalian spinal cord: insights from computational modelling.
    Shevtsova NA; Rybak IA
    J Physiol; 2016 Nov; 594(21):6117-6131. PubMed ID: 27292055
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Decoding the organization of spinal circuits that control locomotion.
    Kiehn O
    Nat Rev Neurosci; 2016 Apr; 17(4):224-38. PubMed ID: 26935168
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Motor neurons control locomotor circuit function retrogradely via gap junctions.
    Song J; Ampatzis K; Björnfors ER; El Manira A
    Nature; 2016 Jan; 529(7586):399-402. PubMed ID: 26760208
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Organization of the Mammalian Locomotor CPG: Review of Computational Model and Circuit Architectures Based on Genetically Identified Spinal Interneurons(1,2,3).
    Rybak IA; Dougherty KJ; Shevtsova NA
    eNeuro; 2015 Sep; 2(5):. PubMed ID: 26478909
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Synaptic Connectivity between Renshaw Cells and Motoneurons in the Recurrent Inhibitory Circuit of the Spinal Cord.
    Moore NJ; Bhumbra GS; Foster JD; Beato M
    J Neurosci; 2015 Oct; 35(40):13673-86. PubMed ID: 26446220
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Modelling the Effects of Electrical Coupling between Unmyelinated Axons of Brainstem Neurons Controlling Rhythmic Activity.
    Hull MJ; Soffe SR; Willshaw DJ; Roberts A
    PLoS Comput Biol; 2015 May; 11(5):e1004240. PubMed ID: 25954930
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Organization of left-right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling.
    Shevtsova NA; Talpalar AE; Markin SN; Harris-Warrick RM; Kiehn O; Rybak IA
    J Physiol; 2015 Jun; 593(11):2403-26. PubMed ID: 25820677
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Peeling back the layers of locomotor control in the spinal cord.
    McLean DL; Dougherty KJ
    Curr Opin Neurobiol; 2015 Aug; 33():63-70. PubMed ID: 25820136
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Sensory-evoked perturbations of locomotor activity by sparse sensory input: a computational study.
    Bui TV; Brownstone RM
    J Neurophysiol; 2015 Apr; 113(7):2824-39. PubMed ID: 25673740
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Facing the challenge of mammalian neural microcircuits: taking a few breaths may help.
    Feldman JL; Kam K
    J Physiol; 2015 Jan; 593(1):3-23. PubMed ID: 25556783
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Adult spinal V2a interneurons show increased excitability and serotonin-dependent bistability.
    Husch A; Dietz SB; Hong DN; Harris-Warrick RM
    J Neurophysiol; 2015 Feb; 113(4):1124-34. PubMed ID: 25520435
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The ever-changing electrical synapse.
    O'Brien J
    Curr Opin Neurobiol; 2014 Dec; 29():64-72. PubMed ID: 24955544
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Locomotor rhythm generation linked to the output of spinal shox2 excitatory interneurons.
    Dougherty KJ; Zagoraiou L; Satoh D; Rozani I; Doobar S; Arber S; Jessell TM; Kiehn O
    Neuron; 2013 Nov; 80(4):920-33. PubMed ID: 24267650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.