These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 30596416)

  • 21. Bond dissociation energies of low-valent lanthanide hydroxides: lower limits from ion-molecule reactions and comparisons with fluorides.
    Parker ML; Jian J; Gibson JK
    Phys Chem Chem Phys; 2021 May; 23(19):11314-11326. PubMed ID: 33973581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predissociation measurements of bond dissociation energies: VC, VN, and VS.
    Johnson EL; Davis QC; Morse MD
    J Chem Phys; 2016 Jun; 144(23):234306. PubMed ID: 27334161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bond energies of ThO(+) and ThC(+): A guided ion beam and quantum chemical investigation of the reactions of thorium cation with O2 and CO.
    Cox RM; Citir M; Armentrout PB; Battey SR; Peterson KA
    J Chem Phys; 2016 May; 144(18):184309. PubMed ID: 27179486
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bond Energies and Thermochemical Properties of Ring-Opened Diradicals and Carbenes of exo-Tricyclo[5.2.1.0(2,6)]decane.
    Hudzik JM; Castillo Á; Bozzelli JW
    J Phys Chem A; 2015 Sep; 119(38):9857-78. PubMed ID: 26295335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Metal Hydride Problem of Computational Chemistry: Origins and Consequences.
    Moltved KA; Kepp KP
    J Phys Chem A; 2019 Apr; 123(13):2888-2900. PubMed ID: 30884233
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accurate bond energies of hydrocarbons from complete basis set extrapolated multi-reference singles and doubles configuration interaction.
    Oyeyemi VB; Pavone M; Carter EA
    Chemphyschem; 2011 Dec; 12(17):3354-64. PubMed ID: 22052831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of the Pr + O → PrO
    Ghiassee M; Stevenson BC; Armentrout PB
    Phys Chem Chem Phys; 2021 Feb; 23(4):2938-2952. PubMed ID: 33480903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reaction of phenols with the 2,2-diphenyl-1-picrylhydrazyl radical. Kinetics and DFT calculations applied to determine ArO-H bond dissociation enthalpies and reaction mechanism.
    Foti MC; Daquino C; Mackie ID; DiLabio GA; Ingold KU
    J Org Chem; 2008 Dec; 73(23):9270-82. PubMed ID: 18991378
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bond dissociation energies of diatomic transition metal selenides: TiSe, ZrSe, HfSe, VSe, NbSe, and TaSe.
    Sorensen JJ; Persinger TD; Sevy A; Franchina JA; Johnson EL; Morse MD
    J Chem Phys; 2016 Dec; 145(21):214308. PubMed ID: 28799363
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monomeric MnIII/II and FeIII/II complexes with terminal hydroxo and oxo ligands: probing reactivity via O-H bond dissociation energies.
    Gupta R; Borovik AS
    J Am Chem Soc; 2003 Oct; 125(43):13234-42. PubMed ID: 14570499
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heats of formation of the H1,2OmSn (m, n = 0-3) molecules from electronic structure calculations.
    Grant DJ; Dixon DA; Francisco JS; Feller D; Peterson KA
    J Phys Chem A; 2009 Oct; 113(42):11343-53. PubMed ID: 19780577
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of the bond dissociation energies of FeX and NiX (X = C, S, Se).
    Matthew DJ; Tieu E; Morse MD
    J Chem Phys; 2017 Apr; 146(14):144310. PubMed ID: 28411603
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bond dissociation energies of FeSi, RuSi, OsSi, CoSi, RhSi, IrSi, NiSi, and PtSi.
    Sevy A; Tieu E; Morse MD
    J Chem Phys; 2018 Nov; 149(17):174307. PubMed ID: 30409013
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Holmium (Ho) oxide, carbide, and dioxide cation bond energies and evaluation of the Ho + O → HoO
    Owen CJ; Kim J; Armentrout PB
    J Chem Phys; 2021 Sep; 155(9):094303. PubMed ID: 34496594
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heats of formation and bond dissociation energies of the halosilanes, methylhalosilanes, and halomethylsilanes.
    Grant DJ; Dixon DA
    J Phys Chem A; 2009 Apr; 113(15):3656-61. PubMed ID: 19320492
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of experimental bond dissociation energies using composite ab initio methods and evaluation of the performances of density functional methods in the calculation of bond dissociation energies.
    Feng Y; Liu L; Wang JT; Huang H; Guo QX
    J Chem Inf Comput Sci; 2003; 43(6):2005-13. PubMed ID: 14632451
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antioxidant potential of glutathione: a theoretical study.
    Fiser B; Szori M; Jójárt B; Izsák R; Csizmadia IG; Viskolcz B
    J Phys Chem B; 2011 Sep; 115(38):11269-77. PubMed ID: 21853966
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energy-Resolved Collision-Induced Dissociation Studies of 2,2'-Bipyridine Complexes of the Late First-Row Divalent Transition-Metal Cations: Determination of the Third-Sequential Binding Energies.
    Nose H; Rodgers MT
    Chempluschem; 2013 Sep; 78(9):1109-1123. PubMed ID: 31986729
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The antimony-group 11 chemical bond: dissociation energies of the diatomic molecules CuSb, AgSb, and AuSb.
    Carta V; Ciccioli A; Gigli G
    J Chem Phys; 2014 Feb; 140(6):064305. PubMed ID: 24527913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transition from hydrogen atom to hydride abstraction by Mn4O4(O2PPh2)6 versus [Mn4O4(O2PPh2)6]+: O-H bond dissociation energies and the formation of Mn4O3(OH)(O2PPh2)6.
    Carrell TG; Bourles E; Lin M; Dismukes GC
    Inorg Chem; 2003 May; 42(9):2849-58. PubMed ID: 12716176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.