BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30596573)

  • 1. Fast Flow-Line-Based Analysis of Ultrasound Spectral and Vector Velocity Estimators.
    Avdal J; Ekroll IK; Torp H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Feb; 66(2):372-381. PubMed ID: 30596573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FLUST: A fast, open source framework for ultrasound blood flow simulations.
    Ekroll IK; Saris AECM; Avdal J
    Comput Methods Programs Biomed; 2023 Aug; 238():107604. PubMed ID: 37220679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast Plane Wave 2-D Vector Flow Imaging Using Transverse Oscillation and Directional Beamforming.
    Jensen J; Villagomez Hoyos CA; Stuart MB; Ewertsen C; Nielsen MB; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jul; 64(7):1050-1062. PubMed ID: 28422656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound simulation of complex flow velocity fields based on computational fluid dynamics.
    Swillens A; Løvstakken L; Kips J; Torp H; Segers P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):546-56. PubMed ID: 19411213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional blood flow velocity estimation using ultrasound speckle pattern dependence on scan direction and A-line acquisition velocity.
    Xu T; Bashford G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):898-908. PubMed ID: 23661124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of numerical simulation strategies for ultrasonic color blood flow imaging, based on a computer and experimental model of the carotid artery.
    Swillens A; De Schryver T; Løvstakken L; Torp H; Segers P
    Ann Biomed Eng; 2009 Nov; 37(11):2188-99. PubMed ID: 19669881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional blood velocity estimation with ultrasound: speckle tracking versus crossed-beam vector Doppler based on flow simulations in a carotid bifurcation model.
    Swillens A; Segers P; Torp H; Løvstakken L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):327-39. PubMed ID: 20178899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-ensemble-based eigen-processing methods for color flow imaging--Part II. The matrix pencil estimator.
    Yu AC; Cobbold RS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):573-87. PubMed ID: 18407848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phased-array vector velocity estimation using transverse oscillations.
    Pihl MJ; Marcher J; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Dec; 59(12):2662-75. PubMed ID: 23221215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High frame-rate blood vector velocity imaging using plane waves: simulations and preliminary experiments.
    Udesen J; Gran F; Hansen KL; Jensen JA; Thomsen C; Nielsen MB
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1729-43. PubMed ID: 18986917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasound Vector Flow Imaging-Part II: Parallel Systems.
    Jensen JA; Nikolov SI; Yu AC; Garcia D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Nov; 63(11):1722-1732. PubMed ID: 27824556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects influencing focusing in synthetic aperture vector flow imaging.
    Oddershede N; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Sep; 54(9):1811-25. PubMed ID: 17941387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating 2-D vector velocities using multidimensional spectrum analysis.
    Oddershede N; Løvstakken L; Torp H; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1744-54. PubMed ID: 18986918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximum likelihood blood velocity estimator incorporating properties of flow physics.
    Schlaikjer M; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jan; 51(1):80-92. PubMed ID: 14995019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-vivo synthetic aperture flow imaging in medical ultrasound.
    Nikolov SI; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jul; 50(7):848-56. PubMed ID: 12894918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of vessel curvature on Doppler derived velocity profiles and fluid flow.
    Krams R; Bambi G; Guidi F; Helderman F; van der Steen AF; Tortoli P
    Ultrasound Med Biol; 2005 May; 31(5):663-71. PubMed ID: 15866416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dynamic ultrasound simulation of a pulsating three-layered CCA for validation of two-dimensional wall motion and blood velocity estimation algorithms.
    Hu X; Zhang Y; Cai G; Zhang K; Deng L; Gao L; Han S; Chen J
    Med Phys; 2018 Jan; 45(1):131-143. PubMed ID: 29148586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood flow evaluation in high-frequency, 40 MHz imaging: a comparative study of four vector velocity estimation methods.
    Marion A; Aoudi W; Basarab A; Delachartre P; Vray D
    Ultrasonics; 2010 Jun; 50(7):683-90. PubMed ID: 20153008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of velocity vector angles using the directional cross-correlation method.
    Kortbek J; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Nov; 53(11):2036-49. PubMed ID: 17091840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.