These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 30596588)
1. Modified Gram-Schmidt Method-Based Variable Projection Algorithm for Separable Nonlinear Models. Chen GY; Gan M; Ding F; Chen CLP IEEE Trans Neural Netw Learn Syst; 2019 Aug; 30(8):2410-2418. PubMed ID: 30596588 [TBL] [Abstract][Full Text] [Related]
2. On Some Separated Algorithms for Separable Nonlinear Least Squares Problems. Min Gan ; Chen CLP; Guang-Yong Chen ; Long Chen IEEE Trans Cybern; 2018 Oct; 48(10):2866-2874. PubMed ID: 28981436 [TBL] [Abstract][Full Text] [Related]
3. Insights Into Algorithms for Separable Nonlinear Least Squares Problems. Chen GY; Gan M; Wang S; Chen CLP IEEE Trans Image Process; 2021; 30():1207-1218. PubMed ID: 33315559 [TBL] [Abstract][Full Text] [Related]
4. Training two-layered feedforward networks with variable projection method. Kim CT; Lee JJ IEEE Trans Neural Netw; 2008 Feb; 19(2):371-5. PubMed ID: 18269969 [TBL] [Abstract][Full Text] [Related]
5. Online Identification of Nonlinear Systems With Separable Structure. Chen GY; Gan M; Chen L; Chen CLP IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):8695-8701. PubMed ID: 36327182 [TBL] [Abstract][Full Text] [Related]
6. An efficient variable projection formulation for separable nonlinear least squares problems. Gan M; Li HX IEEE Trans Cybern; 2014 May; 44(5):707-11. PubMed ID: 23846514 [TBL] [Abstract][Full Text] [Related]
7. Recursive Variable Projection Algorithm for a Class of Separable Nonlinear Models. Gan M; Guan Y; Chen GY; Chen CLP IEEE Trans Neural Netw Learn Syst; 2021 Nov; 32(11):4971-4982. PubMed ID: 33017297 [TBL] [Abstract][Full Text] [Related]
9. A variable projection approach for efficient estimation of RBF-ARX model. Gan M; Li HX; Peng H IEEE Trans Cybern; 2015 Mar; 45(3):476-85. PubMed ID: 24988599 [TBL] [Abstract][Full Text] [Related]
10. Robust and efficient pharmacokinetic parameter non-linear least squares estimation for dynamic contrast enhanced MRI of the prostate. Kargar S; Borisch EA; Froemming AT; Kawashima A; Mynderse LA; Stinson EG; Trzasko JD; Riederer SJ Magn Reson Imaging; 2018 May; 48():50-61. PubMed ID: 29278764 [TBL] [Abstract][Full Text] [Related]
11. Separable least squares identification of nonlinear Hammerstein models: application to stretch reflex dynamics. Westwick DT; Kearney RE Ann Biomed Eng; 2001 Aug; 29(8):707-18. PubMed ID: 11556727 [TBL] [Abstract][Full Text] [Related]
12. A Least-Squares Method for the Solution of the Non-smooth Prescribed Jacobian Equation. Caboussat A; Glowinski R; Gourzoulidis D J Sci Comput; 2022; 93(1):15. PubMed ID: 36035316 [TBL] [Abstract][Full Text] [Related]
13. Term Selection for a Class of Separable Nonlinear Models. Gan M; Chen GY; Chen L; Chen CLP IEEE Trans Neural Netw Learn Syst; 2020 Feb; 31(2):445-451. PubMed ID: 30990193 [TBL] [Abstract][Full Text] [Related]
15. A Multiview Learning Framework With a Linear Computational Cost. Xue X; Nie F; Li Z; Wang S; Li X; Yao M IEEE Trans Cybern; 2018 Aug; 48(8):2416-2425. PubMed ID: 28841565 [TBL] [Abstract][Full Text] [Related]
16. A separable quadratic surrogate total variation minimization algorithm for accelerating accurate CT reconstruction from few-views and limited-angle data. Hou X; Teng Y; Kang Y; Qi S Med Phys; 2018 Feb; 45(2):535-548. PubMed ID: 29171030 [TBL] [Abstract][Full Text] [Related]
17. A general framework of noise suppression in material decomposition for dual-energy CT. Petrongolo M; Dong X; Zhu L Med Phys; 2015 Aug; 42(8):4848-62. PubMed ID: 26233212 [TBL] [Abstract][Full Text] [Related]
18. Regularization of nonlinear decomposition of spectral x-ray projection images. Ducros N; Abascal JFP; Sixou B; Rit S; Peyrin F Med Phys; 2017 Sep; 44(9):e174-e187. PubMed ID: 28901616 [TBL] [Abstract][Full Text] [Related]
19. A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems. Kazemi M; Arefi MM ISA Trans; 2017 Mar; 67():382-388. PubMed ID: 27989529 [TBL] [Abstract][Full Text] [Related]
20. A measurement fusion method for nonlinear system identification using a cooperative learning algorithm. Xia Y; Kamel MS Neural Comput; 2007 Jun; 19(6):1589-632. PubMed ID: 17444761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]