These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 30596593)
1. The Set-Based Hypervolume Newton Method for Bi-Objective Optimization. Sosa Hernandez VA; Schutze O; Wang H; Deutz A; Emmerich M IEEE Trans Cybern; 2020 May; 50(5):2186-2196. PubMed ID: 30596593 [TBL] [Abstract][Full Text] [Related]
2. How to Specify a Reference Point in Hypervolume Calculation for Fair Performance Comparison. Ishibuchi H; Imada R; Setoguchi Y; Nojima Y Evol Comput; 2018; 26(3):411-440. PubMed ID: 29786458 [TBL] [Abstract][Full Text] [Related]
3. Multiplicative approximations, optimal hypervolume distributions, and the choice of the reference point. Friedrich T; Neumann F; Thyssen C Evol Comput; 2015; 23(1):131-59. PubMed ID: 24654679 [TBL] [Abstract][Full Text] [Related]
4. HypE: an algorithm for fast hypervolume-based many-objective optimization. Bader J; Zitzler E Evol Comput; 2011; 19(1):45-76. PubMed ID: 20649424 [TBL] [Abstract][Full Text] [Related]
6. A Simple and Fast Hypervolume Indicator-Based Multiobjective Evolutionary Algorithm. Jiang S; Zhang J; Ong YS; Zhang AN; Tan PS IEEE Trans Cybern; 2015 Oct; 45(10):2202-13. PubMed ID: 25474815 [TBL] [Abstract][Full Text] [Related]
7. An efficient algorithm for computing hypervolume contributions. Bringmann K; Friedrich T Evol Comput; 2010; 18(3):383-402. PubMed ID: 20560759 [TBL] [Abstract][Full Text] [Related]
8. Interval Multiobjective Optimization With Memetic Algorithms. Sun J; Miao Z; Gong D; Zeng XJ; Li J; Wang G IEEE Trans Cybern; 2020 Aug; 50(8):3444-3457. PubMed ID: 31034428 [TBL] [Abstract][Full Text] [Related]
9. Global WASF-GA: An Evolutionary Algorithm in Multiobjective Optimization to Approximate the Whole Pareto Optimal Front. Saborido R; Ruiz AB; Luque M Evol Comput; 2017; 25(2):309-349. PubMed ID: 26855136 [TBL] [Abstract][Full Text] [Related]
10. A new evolutionary algorithm for solving many-objective optimization problems. Zou X; Chen Y; Liu M; Kang L IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1402-12. PubMed ID: 18784020 [TBL] [Abstract][Full Text] [Related]
12. Hypervolume Subset Selection with Small Subsets. Groz B; Maniu S Evol Comput; 2019; 27(4):611-637. PubMed ID: 30365385 [TBL] [Abstract][Full Text] [Related]
13. Guiding Evolutionary Multiobjective Optimization With Generic Front Modeling. Tian Y; Zhang X; Cheng R; He C; Jin Y IEEE Trans Cybern; 2020 Mar; 50(3):1106-1119. PubMed ID: 30575553 [TBL] [Abstract][Full Text] [Related]
14. Objective space division-based hybrid evolutionary algorithm for handing overlapping solutions in combinatorial problems. González B; Rossit DA; Méndez M; Frutos M Math Biosci Eng; 2022 Jan; 19(4):3369-3401. PubMed ID: 35341256 [TBL] [Abstract][Full Text] [Related]
16. Multimodal optimization using a bi-objective evolutionary algorithm. Deb K; Saha A Evol Comput; 2012; 20(1):27-62. PubMed ID: 21591888 [TBL] [Abstract][Full Text] [Related]
17. On the Construction of Pareto-Compliant Combined Indicators. Falcón-Cardona JG; Emmerich MTM; Coello CAC Evol Comput; 2022 Sep; 30(3):381-408. PubMed ID: 35180301 [TBL] [Abstract][Full Text] [Related]
18. A Collaborative Neurodynamic Approach to Multiobjective Optimization. Leung MF; Wang J IEEE Trans Neural Netw Learn Syst; 2018 Nov; 29(11):5738-5748. PubMed ID: 29994099 [TBL] [Abstract][Full Text] [Related]
19. MOEA/D with adaptive weight adjustment. Qi Y; Ma X; Liu F; Jiao L; Sun J; Wu J Evol Comput; 2014; 22(2):231-64. PubMed ID: 23777254 [TBL] [Abstract][Full Text] [Related]
20. A non-dominated sorting based multi-objective neural network algorithm. Khurana D; Yadav A; Sadollah A MethodsX; 2023; 10():102152. PubMed ID: 37091952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]