These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 30596593)
21. Corner Sort for Pareto-Based Many-Objective Optimization. Wang H; Yao X IEEE Trans Cybern; 2014 Jan; 44(1):92-102. PubMed ID: 23757536 [TBL] [Abstract][Full Text] [Related]
22. Improved learning algorithms for mixture of experts in multiclass classification. Chen K; Xu L; Chi H Neural Netw; 1999 Nov; 12(9):1229-1252. PubMed ID: 12662629 [TBL] [Abstract][Full Text] [Related]
23. Multi-objective evolutionary algorithms for fuzzy classification in survival prediction. Jiménez F; Sánchez G; Juárez JM Artif Intell Med; 2014 Mar; 60(3):197-219. PubMed ID: 24525210 [TBL] [Abstract][Full Text] [Related]
24. Constrained Multiobjective Optimization Algorithm Based on Immune System Model. Qian S; Ye Y; Jiang B; Wang J IEEE Trans Cybern; 2016 Sep; 46(9):2056-69. PubMed ID: 26285230 [TBL] [Abstract][Full Text] [Related]
26. Surrogate-based multi-objective design optimization of a coronary stent: Altering geometry toward improved biomechanical performance. Ribeiro NS; Folgado J; Rodrigues HC Int J Numer Method Biomed Eng; 2021 Jun; 37(6):e3453. PubMed ID: 33751821 [TBL] [Abstract][Full Text] [Related]
27. Calculating complete and exact Pareto front for multiobjective optimization: a new deterministic approach for discrete problems. Hu XB; Wang M; Di Paolo E IEEE Trans Cybern; 2013 Jun; 43(3):1088-101. PubMed ID: 23193246 [TBL] [Abstract][Full Text] [Related]
28. A Many-Objective Evolutionary Algorithm Using A One-by-One Selection Strategy. Liu Y; Gong D; Sun J; Jin Y IEEE Trans Cybern; 2017 Sep; 47(9):2689-2702. PubMed ID: 28092588 [TBL] [Abstract][Full Text] [Related]
29. A Clustering-Based Adaptive Evolutionary Algorithm for Multiobjective Optimization With Irregular Pareto Fronts. Hua Y; Jin Y; Hao K IEEE Trans Cybern; 2019 Jul; 49(7):2758-2770. PubMed ID: 29994342 [TBL] [Abstract][Full Text] [Related]
30. Distance majorization and its applications. Chi EC; Zhou H; Lange K Math Program; 2014 Aug; 146():409-436. PubMed ID: 25392563 [TBL] [Abstract][Full Text] [Related]
31. Hyperplane Assisted Evolutionary Algorithm for Many-Objective Optimization Problems. Chen H; Tian Y; Pedrycz W; Wu G; Wang R; Wang L IEEE Trans Cybern; 2020 Jul; 50(7):3367-3380. PubMed ID: 30843815 [TBL] [Abstract][Full Text] [Related]
32. Hypervolume Subset Selection in Two Dimensions: Formulations and Algorithms. Kuhn T; Fonseca CM; Paquete L; Ruzika S; Duarte MM; Figueira JR Evol Comput; 2016; 24(3):411-25. PubMed ID: 26135717 [TBL] [Abstract][Full Text] [Related]
33. Nondegenerate piecewise linear systems: a finite Newton algorithm and applications in machine learning. Yuan XT; Yan S Neural Comput; 2012 Apr; 24(4):1047-84. PubMed ID: 22091666 [TBL] [Abstract][Full Text] [Related]
34. S-Metric calculation by considering dominated hypervolume as Klee's measure problem. Beume N Evol Comput; 2009; 17(4):477-92. PubMed ID: 19916778 [TBL] [Abstract][Full Text] [Related]
35. Subsampled Hessian Newton Methods for Supervised Learning. Wang CC; Huang CH; Lin CJ Neural Comput; 2015 Aug; 27(8):1766-95. PubMed ID: 26079755 [TBL] [Abstract][Full Text] [Related]
36. On the use of problem-specific candidate generators for the hybrid optimization of multi-objective production engineering problems. Weinert K; Zabel A; Kersting P; Michelitsch T; Wagner T Evol Comput; 2009; 17(4):527-44. PubMed ID: 19916775 [TBL] [Abstract][Full Text] [Related]
37. Bi-objective design-for-control for improving the pressure management and resilience of water distribution networks. Ulusoy AJ; Mahmoud HA; Pecci F; Keedwell EC; Stoianov I Water Res; 2022 Aug; 222():118914. PubMed ID: 35933815 [TBL] [Abstract][Full Text] [Related]
38. COSMO: A dynamic programming algorithm for multicriteria codon optimization. Taneda A; Asai K Comput Struct Biotechnol J; 2020; 18():1811-1818. PubMed ID: 32695273 [TBL] [Abstract][Full Text] [Related]
39. Computing gap free Pareto front approximations with stochastic search algorithms. Schütze O; Laumanns M; Tantar E; Coello CA; Talbi el-G Evol Comput; 2010; 18(1):65-96. PubMed ID: 20064024 [TBL] [Abstract][Full Text] [Related]
40. A General Framework of Dynamic Constrained Multiobjective Evolutionary Algorithms for Constrained Optimization. Zeng S; Jiao R; Li C; Li X; Alkasassbeh JS IEEE Trans Cybern; 2017 Sep; 47(9):2678-2688. PubMed ID: 28092596 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]