BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 30596633)

  • 1. Catalytic mechanism of the tyrosinase reaction toward the Tyr98 residue in the caddie protein.
    Matoba Y; Kihara S; Bando N; Yoshitsu H; Sakaguchi M; Kayama K; Yanagisawa S; Ogura T; Sugiyama M
    PLoS Biol; 2018 Dec; 16(12):e3000077. PubMed ID: 30596633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation Mechanism of the Streptomyces Tyrosinase Assisted by the Caddie Protein.
    Matoba Y; Kihara S; Muraki Y; Bando N; Yoshitsu H; Kuroda T; Sakaguchi M; Kayama K; Tai H; Hirota S; Ogura T; Sugiyama M
    Biochemistry; 2017 Oct; 56(41):5593-5603. PubMed ID: 28902505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis.
    Matoba Y; Kumagai T; Yamamoto A; Yoshitsu H; Sugiyama M
    J Biol Chem; 2006 Mar; 281(13):8981-90. PubMed ID: 16436386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tyrosinase reactivity in a model complex: an alternative hydroxylation mechanism.
    Mirica LM; Vance M; Rudd DJ; Hedman B; Hodgson KO; Solomon EI; Stack TD
    Science; 2005 Jun; 308(5730):1890-2. PubMed ID: 15976297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A molecular mechanism for copper transportation to tyrosinase that is assisted by a metallochaperone, caddie protein.
    Matoba Y; Bando N; Oda K; Noda M; Higashikawa F; Kumagai T; Sugiyama M
    J Biol Chem; 2011 Aug; 286(34):30219-31. PubMed ID: 21730070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum chemical approach to the mechanism for the biological conversion of tyrosine to dopaquinone.
    Inoue T; Shiota Y; Yoshizawa K
    J Am Chem Soc; 2008 Dec; 130(50):16890-7. PubMed ID: 19007228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper-Oxygen Dynamics in the Tyrosinase Mechanism.
    Fujieda N; Umakoshi K; Ochi Y; Nishikawa Y; Yanagisawa S; Kubo M; Kurisu G; Itoh S
    Angew Chem Int Ed Engl; 2020 Aug; 59(32):13385-13390. PubMed ID: 32356371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper-O2 reactivity of tyrosinase models towards external monophenolic substrates: molecular mechanism and comparison with the enzyme.
    Rolff M; Schottenheim J; Decker H; Tuczek F
    Chem Soc Rev; 2011 Jul; 40(7):4077-98. PubMed ID: 21416076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophilic arene hydroxylation and phenol O-H oxidations performed by an unsymmetric μ-η(1):η(1)-O2-peroxo dicopper(II) complex.
    Garcia-Bosch I; Ribas X; Costas M
    Chemistry; 2012 Feb; 18(7):2113-22. PubMed ID: 22250002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The basicity of an active-site water molecule discriminates between tyrosinase and catechol oxidase activity.
    Matoba Y; Oda K; Muraki Y; Masuda T
    Int J Biol Macromol; 2021 Jul; 183():1861-1870. PubMed ID: 34089758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First structures of an active bacterial tyrosinase reveal copper plasticity.
    Sendovski M; Kanteev M; Ben-Yosef VS; Adir N; Fishman A
    J Mol Biol; 2011 Jan; 405(1):227-37. PubMed ID: 21040728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidation of the tyrosinase/O
    Kipouros I; Stańczak A; Ginsbach JW; Andrikopoulos PC; Rulíšek L; Solomon EI
    Proc Natl Acad Sci U S A; 2022 Aug; 119(33):e2205619119. PubMed ID: 35939688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and mechanistic insights into the oxy form of tyrosinase from molecular dynamics simulations.
    Deeth RJ; Diedrich C
    J Biol Inorg Chem; 2010 Feb; 15(2):117-29. PubMed ID: 19690900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and reactivity models for copper oxygenases: cooperative effects and novel reactivities.
    Serrano-Plana J; Garcia-Bosch I; Company A; Costas M
    Acc Chem Res; 2015 Aug; 48(8):2397-406. PubMed ID: 26207342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. mu-eta2:eta2-peroxodicopper(II) complex with a secondary diamine ligand: a functional model of tyrosinase.
    Mirica LM; Rudd DJ; Vance MA; Solomon EI; Hodgson KO; Hedman B; Stack TD
    J Am Chem Soc; 2006 Mar; 128(8):2654-65. PubMed ID: 16492052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trapping tyrosinase key active intermediate under turnover.
    Spada A; Palavicini S; Monzani E; Bubacco L; Casella L
    Dalton Trans; 2009 Sep; (33):6468-71. PubMed ID: 19672489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catecholase activity of a series of dicopper(II) complexes with variable Cu-OH(phenol) moieties.
    Neves A; Rossi LM; Bortoluzzi AJ; Szpoganicz B; Wiezbicki C; Schwingel E; Haase W; Ostrovsky S
    Inorg Chem; 2002 Apr; 41(7):1788-94. PubMed ID: 11925171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aromatic hydroxylation in a copper bis(imine) complex mediated by a micro-eta2:eta2 peroxo dicopper core: a mechanistic scenario.
    Sander O; Henss A; Näther C; Würtele C; Holthausen MC; Schindler S; Tuczek F
    Chemistry; 2008; 14(31):9714-29. PubMed ID: 18785680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic oxidation of 2-aminophenols and ortho hydroxylation of aromatic amines by tyrosinase.
    Toussaint O; Lerch K
    Biochemistry; 1987 Dec; 26(26):8567-71. PubMed ID: 2964867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Biomimetic Hydroxylation Catalysis with a Bis(pyrazolyl)imidazolylmethane Copper Peroxide Complex.
    Wilfer C; Liebhäuser P; Hoffmann A; Erdmann H; Grossmann O; Runtsch L; Paffenholz E; Schepper R; Dick R; Bauer M; Dürr M; Ivanović-Burmazović I; Herres-Pawlis S
    Chemistry; 2015 Dec; 21(49):17639-49. PubMed ID: 26458073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.