These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30596726)

  • 1. Effects of periodic sensory perturbations during electrical stimulation on gait cycle period.
    Nishimura K; Martinez E; Loeza A; Parker J; Kim SJ
    PLoS One; 2018; 13(12):e0209781. PubMed ID: 30596726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Walking is not like reaching: evidence from periodic mechanical perturbations.
    Ahn J; Hogan N
    PLoS One; 2012; 7(3):e31767. PubMed ID: 22479311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of gait phase entrainment in healthy subjects during rhythmic electrical stimulation of the medial gastrocnemius.
    Thorp JE; Adamczyk PG
    PLoS One; 2020; 15(10):e0241339. PubMed ID: 33095823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple state-determined model reproduces entrainment and phase-locking of human walking.
    Ahn J; Hogan N
    PLoS One; 2012; 7(11):e47963. PubMed ID: 23152761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treadmill vs. overground walking: different response to physical interaction.
    Ochoa J; Sternad D; Hogan N
    J Neurophysiol; 2017 Oct; 118(4):2089-2102. PubMed ID: 28701533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of functional electrical stimulation of the hamstrings on knee kinematics in stroke survivors walking with stiff knee gait.
    Tenniglo MJB; Buurke JH; Prinsen EC; Kottink AIR; Nene AV; Rietman JS
    J Rehabil Med; 2018 Aug; 50(8):719-724. PubMed ID: 29944167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of conditioning cutaneomuscular stimulation on the soleus H-reflex in normal and spastic paretic subjects during walking and standing.
    Fung J; Barbeau H
    J Neurophysiol; 1994 Nov; 72(5):2090-104. PubMed ID: 7884446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of entrainment with ankle mechanical perturbation to treat locomotor deficit of neurologically impaired patients.
    Ahn J; Patterson T; Lee H; Klenk D; Lo A; Krebs HI; Hogan N
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7474-7. PubMed ID: 22256067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase resetting behavior in human gait is influenced by treadmill walking speed.
    Nessler JA; Spargo T; Craig-Jones A; Milton JG
    Gait Posture; 2016 Jan; 43():187-91. PubMed ID: 26475759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait Entrainment to Torque Pulses From a Hip Exoskeleton Robot.
    Lee J; Huber ME; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():656-667. PubMed ID: 35286261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interlimb coordination in body-weight supported locomotion: A pilot study.
    Seiterle S; Susko T; Artemiadis PK; Riener R; Igo Krebs H
    J Biomech; 2015 Aug; 48(11):2837-43. PubMed ID: 25990210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical entrainment of fictive locomotion in the decerebrate cat.
    Kriellaars DJ; Brownstone RM; Noga BR; Jordan LM
    J Neurophysiol; 1994 Jun; 71(6):2074-86. PubMed ID: 7931503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A functional electrical stimulation system for human walking inspired by reflexive control principles.
    Meng L; Porr B; Macleod CA; Gollee H
    Proc Inst Mech Eng H; 2017 Apr; 231(4):315-325. PubMed ID: 28332444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensorimotor synchronization during gait is altered by the addition of variability to an external cue.
    Tackett E; Nessler J
    Hum Mov Sci; 2020 Jun; 71():102626. PubMed ID: 32452442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of the most common gait perturbations on the compensatory limb's ankle, knee, and hip moments during the first stepping response.
    Yoo D; Seo KH; Lee BC
    Gait Posture; 2019 Jun; 71():98-104. PubMed ID: 31031225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control strategies for rapid, visually guided adjustments of the foot during continuous walking.
    Barton SL; Matthis JS; Fajen BR
    Exp Brain Res; 2019 Jul; 237(7):1673-1690. PubMed ID: 30976822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Partial Absence of Visual Feedback Information on Gait Symmetry.
    Kim SJ; Kayitesi MA; Chan A; Graham K
    Appl Psychophysiol Biofeedback; 2017 Jun; 42(2):107-115. PubMed ID: 28293760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of bilateral subthalamic nucleus stimulation on gait in Parkinson's disease.
    Faist M; Xie J; Kurz D; Berger W; Maurer C; Pollak P; Lücking CH
    Brain; 2001 Aug; 124(Pt 8):1590-600. PubMed ID: 11459750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Neuronal control of posture and locomotion in decerebrated and spinalized animals].
    Musienko PE; Gorskiĭ OV; Kilimnik VA; Kozlovskaia IB; Courtine G; Edgerton VR; Gerasimenko IuP
    Ross Fiziol Zh Im I M Sechenova; 2013 Mar; 99(3):392-405. PubMed ID: 23789442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.