These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 30597260)

  • 21. Model-based physiological noise removal in fast fMRI.
    Agrawal U; Brown EN; Lewis LD
    Neuroimage; 2020 Jan; 205():116231. PubMed ID: 31589991
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Abnormal resting-state functional connectivity study in unilateral pulsatile tinnitus patients with single etiology: A seed-based functional connectivity study.
    Lv H; Zhao P; Liu Z; Li R; Zhang L; Wang P; Yan F; Liu L; Wang G; Zeng R; Li T; Dong C; Gong S; Wang Z
    Eur J Radiol; 2016 Nov; 85(11):2023-2029. PubMed ID: 27776655
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MULAN: Evaluation and ensemble statistical inference for functional connectivity.
    Wang HE; Friston KJ; Bénar CG; Woodman MM; Chauvel P; Jirsa V; Bernard C
    Neuroimage; 2018 Feb; 166():167-184. PubMed ID: 29111409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimizing fMRI preprocessing pipelines for block-design tasks as a function of age.
    Churchill NW; Raamana P; Spring R; Strother SC
    Neuroimage; 2017 Jul; 154():240-254. PubMed ID: 28216431
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accurate modeling of temporal correlations in rapidly sampled fMRI time series.
    Corbin N; Todd N; Friston KJ; Callaghan MF
    Hum Brain Mapp; 2018 Oct; 39(10):3884-3897. PubMed ID: 29885101
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nuisance effects in inter-scan functional connectivity estimates before and after nuisance regression.
    Nalci A; Luo W; Liu TT
    Neuroimage; 2019 Nov; 202():116005. PubMed ID: 31336189
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interpreting temporal fluctuations in resting-state functional connectivity MRI.
    Liégeois R; Laumann TO; Snyder AZ; Zhou J; Yeo BTT
    Neuroimage; 2017 Dec; 163():437-455. PubMed ID: 28916180
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Serial correlations in single-subject fMRI with sub-second TR.
    Bollmann S; Puckett AM; Cunnington R; Barth M
    Neuroimage; 2018 Feb; 166():152-166. PubMed ID: 29066396
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adult brain activation during visual learning and memory tasks. An experimental approach to translational neuroscience.
    Popova F; Kovacheva A; Garov P; Sivkov S; Kandilarova S; Sirakov N; Stoeva M; Velkova KG
    J Eval Clin Pract; 2018 Aug; 24(4):864-868. PubMed ID: 29570910
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI.
    Taghia J; Ryali S; Chen T; Supekar K; Cai W; Menon V
    Neuroimage; 2017 Jul; 155():271-290. PubMed ID: 28267626
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigating the neural basis for fMRI-based functional connectivity in a blocked design: application to interregional correlations and psycho-physiological interactions.
    Kim J; Horwitz B
    Magn Reson Imaging; 2008 Jun; 26(5):583-93. PubMed ID: 18191524
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonlinear manifold learning in functional magnetic resonance imaging uncovers a low-dimensional space of brain dynamics.
    Gao S; Mishne G; Scheinost D
    Hum Brain Mapp; 2021 Oct; 42(14):4510-4524. PubMed ID: 34184812
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI.
    Koppe G; Toutounji H; Kirsch P; Lis S; Durstewitz D
    PLoS Comput Biol; 2019 Aug; 15(8):e1007263. PubMed ID: 31433810
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generalizing prediction of task-evoked brain activity across datasets and populations.
    Tik N; Gal S; Madar A; Ben-David T; Bernstein-Eliav M; Tavor I
    Neuroimage; 2023 Aug; 276():120213. PubMed ID: 37268097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sparse Graphical Models for Functional Connectivity Networks: Best Methods and the Autocorrelation Issue.
    Zhu Y; Cribben I
    Brain Connect; 2018 Apr; 8(3):139-165. PubMed ID: 29634321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combining Multiple Functional Connectivity Methods to Improve Causal Inferences.
    Sanchez-Romero R; Cole MW
    J Cogn Neurosci; 2021 Feb; 33(2):180-194. PubMed ID: 32427070
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of Deep Learning Model for Task-Evoked fMRI Data Classification.
    Huang X; Xiao J; Wu C
    Comput Intell Neurosci; 2021; 2021():6660866. PubMed ID: 34422034
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial parcellations, spectral filtering, and connectivity measures in fMRI: Optimizing for discrimination.
    Sala-Llonch R; Smith SM; Woolrich M; Duff EP
    Hum Brain Mapp; 2019 Feb; 40(2):407-419. PubMed ID: 30259597
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mental rotation task specifically modulates functional connectivity strength of intrinsic brain activity in low frequency domains: A maximum uncertainty linear discriminant analysis.
    Gao M; Zhang D; Wang Z; Liang B; Cai Y; Gao Z; Li J; Chang S; Jiao B; Huang R; Liu M
    Behav Brain Res; 2017 Mar; 320():233-243. PubMed ID: 28011171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.