These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30597353)

  • 1. Fixed bed column evaluation of phosphate adsorption and recovery from aqueous solutions using recycled steel byproducts.
    Sellner BM; Hua G; Ahiablame LM
    J Environ Manage; 2019 Mar; 233():595-602. PubMed ID: 30597353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of industrial by-products and natural minerals for phosphate adsorption from subsurface drainage.
    Sellner BM; Hua G; Ahiablame LM; Trooien TP; Hay CH; Kjaersgaard J
    Environ Technol; 2019 Feb; 40(6):756-767. PubMed ID: 29157153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorus removal from wastewater using Ca-modified attapulgite: Fixed-bed column performance and breakthrough curves analysis.
    Lv N; Li X
    J Environ Manage; 2023 Feb; 328():116905. PubMed ID: 36521218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrate and phosphate removal from agricultural subsurface drainage using laboratory woodchip bioreactors and recycled steel byproduct filters.
    Hua G; Salo MW; Schmit CG; Hay CH
    Water Res; 2016 Oct; 102():180-189. PubMed ID: 27344249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate recovery with granular acid-activated neutralized red mud: Fixed-bed column performance and breakthrough curve modelling.
    Hu A; Ren G; Che J; Guo Y; Ye J; Zhou S
    J Environ Sci (China); 2020 Apr; 90():78-86. PubMed ID: 32081343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fixed-bed column for phosphate removal from aqueous solutions using an andosol-bagasse mixture.
    Woumfo ED; Siéwé JM; Njopwouo D
    J Environ Manage; 2015 Mar; 151():450-60. PubMed ID: 25617785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorus recovery from wastewater using pyridine-based ion-exchange resins: Role of impregnated iron oxide nanoparticles and preloaded Lewis acid (Cu
    Beaudry JW; Sengupta S
    Water Environ Res; 2021 May; 93(5):774-786. PubMed ID: 33108037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fixed-bed column study of phosphate adsorption using immobilized phosphate-binding protein.
    Hussein FB; Mayer BK
    Chemosphere; 2022 May; 295():133908. PubMed ID: 35143858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): Fixed-bed column study.
    Nguyen TA; Ngo HH; Guo WS; Pham TQ; Li FM; Nguyen TV; Bui XT
    Sci Total Environ; 2015 Aug; 523():40-9. PubMed ID: 25847314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphate removal from solution using steel slag through magnetic separation.
    Xiong J; He Z; Mahmood Q; Liu D; Yang X; Islam E
    J Hazard Mater; 2008 Mar; 152(1):211-5. PubMed ID: 17703877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of myo-inositol hexakisphosphate in water using recycled water treatment residual.
    Qiu F; Wang J; Zhao D; Fu K
    Environ Sci Pollut Res Int; 2018 Oct; 25(29):29593-29604. PubMed ID: 30141166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of different pairing configurations of woodchips and steel chips in dual media treatment systems on nutrient removal and organics and iron leaching.
    Kouanda A; Hua G
    J Environ Manage; 2021 Dec; 300():113722. PubMed ID: 34543970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fixed-Bed Column Technique for the Removal of Phosphate from Water Using Leftover Coal.
    Mekonnen DT; Alemayehu E; Lennartz B
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fixed-bed column dynamics of ultrasound and Na-functionalized diatomite to remove phosphate from water.
    Ye J; Yang M; Ding X; Tan W; Li G; Fang S; Wang H
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):12441-12449. PubMed ID: 34231150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate removal and recovery with a synthetic hydrotalcite as an adsorbent.
    Kuzawa K; Jung YJ; Kiso Y; Yamada T; Nagai M; Lee TG
    Chemosphere; 2006 Jan; 62(1):45-52. PubMed ID: 15951001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-cost chitosan-calcite adsorbent development for potential phosphate removal and recovery from wastewater effluent.
    Pap S; Kirk C; Bremner B; Turk Sekulic M; Shearer L; Gibb SW; Taggart MA
    Water Res; 2020 Apr; 173():115573. PubMed ID: 32035277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal.
    Altmann J; Rehfeld D; Träder K; Sperlich A; Jekel M
    Water Res; 2016 Apr; 92():131-9. PubMed ID: 26849316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of nitrogen and phosphorus in wastewater by red mud-modified biochar and its potential application.
    Zhao Z; Wang B; Feng Q; Chen M; Zhang X; Zhao R
    Sci Total Environ; 2023 Feb; 860():160289. PubMed ID: 36414073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of low-concentration phosphorus using a fluidized raw dolomite bed.
    Ayoub GM; Kalinian H
    Water Environ Res; 2006 Apr; 78(4):353-61. PubMed ID: 16749303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of Phosphorus Removal by Recycled Crushed Concrete.
    Deng Y; Wheatley A
    Int J Environ Res Public Health; 2018 Feb; 15(2):. PubMed ID: 29462987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.