These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30597359)

  • 1. Impact of microbial iron oxide reduction on the transport of diffusible tracers and non-diffusible nanoparticles in soils.
    Liang X; Radosevich M; Löffler F; Schaeffer SM; Zhuang J
    Chemosphere; 2019 Apr; 220():391-402. PubMed ID: 30597359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viral and bacterial community responses to stimulated Fe(III)-bioreduction during simulated subsurface bioremediation.
    Liang X; Zhuang J; Löffler FE; Zhang Y; DeBruyn JM; Wilhelm SW; Schaeffer SM; Radosevich M
    Environ Microbiol; 2019 Jun; 21(6):2043-2055. PubMed ID: 30773777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of crude oil-induced water repellency on transport of Escherichia coli and bromide through repacked and physically-weathered soil columns.
    Moradi A; Mosaddeghi MR; Chavoshi E; Safadoust A; Soleimani M
    Environ Pollut; 2019 Dec; 255(Pt 2):113230. PubMed ID: 31627174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colloid mobilization and arsenite transport in soil columns: effect of ionic strength.
    Zhang H; Selim HM
    J Environ Qual; 2007; 36(5):1273-80. PubMed ID: 17636288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of soil-aged silver nanoparticles in unsaturated sand.
    Kumahor SK; Hron P; Metreveli G; Schaumann GE; Klitzke S; Lang F; Vogel HJ
    J Contam Hydrol; 2016 Dec; 195():31-39. PubMed ID: 27871667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction: A column study to mimic reactive transfer in an anoxic aquifer.
    Hellal J; Guédron S; Huguet L; Schäfer J; Laperche V; Joulian C; Lanceleur L; Burnol A; Ghestem JP; Garrido F; Battaglia-Brunet F
    J Contam Hydrol; 2015 Sep; 180():56-68. PubMed ID: 26275395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of rain intensity and soil colloids in the retention of surfactant-stabilized silver nanoparticles in soil.
    Makselon J; Siebers N; Meier F; Vereecken H; Klumpp E
    Environ Pollut; 2018 Jul; 238():1027-1034. PubMed ID: 29449114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron oxide nanoparticles in geomicrobiology: from biogeochemistry to bioremediation.
    Braunschweig J; Bosch J; Meckenstock RU
    N Biotechnol; 2013 Sep; 30(6):793-802. PubMed ID: 23557995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soil-pore water distribution of silver and gold engineered nanoparticles in undisturbed soils under unsaturated conditions.
    Tavares DS; Rodrigues SM; Cruz N; Carvalho C; Teixeira T; Carvalho L; Duarte AC; Trindade T; Pereira E; Römkens PF
    Chemosphere; 2015 Oct; 136():86-94. PubMed ID: 25965160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper in synthesized Fe(III) minerals and Fe-rich soils.
    Hu C; Zhang Y; Zhang L; Luo W
    J Microbiol Biotechnol; 2014 Apr; 24(4):534-44. PubMed ID: 24448165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of geochemical properties and land-use types on the microbial reduction of Fe(III) in subtropical soils.
    Liu C; Wang Y; Li F; Chen M; Zhai G; Tao L; Liu C
    Environ Sci Process Impacts; 2014 Aug; 16(8):1938-47. PubMed ID: 24931535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of carboxyl-functionalized carbon black nanoparticles in saturated porous media: Column experiments and model analyses.
    Kang JK; Yi IG; Park JA; Kim SB; Kim H; Han Y; Kim PJ; Eom IC; Jo E
    J Contam Hydrol; 2015; 177-178():194-205. PubMed ID: 25977994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of microbial mediated iron plaque reduction on arsenic mobility in paddy soil.
    Wang X; Chen X; Yang J; Wang Z; Sun G
    J Environ Sci (China); 2009; 21(11):1562-8. PubMed ID: 20108691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory effect of nitrate/nitrite on the microbial reductive dissolution of arsenic and iron from soils into pore water.
    Zhu X; Zeng XC; Chen X; Wu W; Wang Y
    Ecotoxicology; 2019 Jul; 28(5):528-538. PubMed ID: 31119594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR; Holmes DE; Nevin KP
    Adv Microb Physiol; 2004; 49():219-86. PubMed ID: 15518832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetate biostimulation as an effective treatment for cleaning up alkaline soil highly contaminated with Cr(VI).
    Lara P; Morett E; Juárez K
    Environ Sci Pollut Res Int; 2017 Nov; 24(33):25513-25521. PubMed ID: 27525740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic transformation of DDT related to iron(III) reduction and microbial community structure in paddy soils.
    Chen M; Cao F; Li F; Liu C; Tong H; Wu W; Hu M
    J Agric Food Chem; 2013 Mar; 61(9):2224-33. PubMed ID: 23402620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking effluent discharges in undisturbed stony soil and alluvial gravel aquifer using synthetic DNA tracers.
    Pang L; Robson B; Farkas K; McGill E; Varsani A; Gillot L; Li J; Abraham P
    Sci Total Environ; 2017 Aug; 592():144-152. PubMed ID: 28319701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependence of arsenic fate and transport on biogeochemical heterogeneity arising from the physical structure of soils and sediments.
    Masue-Slowey Y; Ying SC; Kocar BD; Pallud CE; Fendorf S
    J Environ Qual; 2013 Jul; 42(4):1119-29. PubMed ID: 24216363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles.
    He S; Feng Y; Ni J; Sun Y; Xue L; Feng Y; Yu Y; Lin X; Yang L
    Chemosphere; 2016 Mar; 147():195-202. PubMed ID: 26766356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.