These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30597378)

  • 1. The mechanics of scaling-up multichannel scaffold technology for clinical nerve repair.
    Pawelec KM; Hix J; Shapiro EM; Sakamoto J
    J Mech Behav Biomed Mater; 2019 Mar; 91():247-254. PubMed ID: 30597378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo.
    Huang L; Zhu L; Shi X; Xia B; Liu Z; Zhu S; Yang Y; Ma T; Cheng P; Luo K; Huang J; Luo Z
    Acta Biomater; 2018 Mar; 68():223-236. PubMed ID: 29274478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering a platform for nerve regeneration with direct application to nerve repair technology.
    Pawelec KM; Yoon C; Giger RJ; Sakamoto J
    Biomaterials; 2019 Sep; 216():119263. PubMed ID: 31220794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A waterborne polyurethane 3D scaffold containing PLGA with a controllable degradation rate and an anti-inflammatory effect for potential applications in neural tissue repair.
    Du B; Yin H; Chen Y; Lin W; Wang Y; Zhao D; Wang G; He X; Li J; Li Z; Luo F; Tan H; Fu Q
    J Mater Chem B; 2020 May; 8(20):4434-4446. PubMed ID: 32367107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructure and in vivo characterization of multi-channel nerve guidance scaffolds.
    Pawelec KM; Koffler J; Shahriari D; Galvan A; Tuszynski MH; Sakamoto J
    Biomed Mater; 2018 Apr; 13(4):044104. PubMed ID: 29411711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of chitosan/OGP coated porous poly(ε-caprolactone) scaffold for bone tissue engineering.
    Cui Z; Lin L; Si J; Luo Y; Wang Q; Lin Y; Wang X; Chen W
    J Biomater Sci Polym Ed; 2017 Jun; 28(9):826-845. PubMed ID: 28278041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaffolds from block polyurethanes based on poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol) (PEG) for peripheral nerve regeneration.
    Niu Y; Chen KC; He T; Yu W; Huang S; Xu K
    Biomaterials; 2014 May; 35(14):4266-77. PubMed ID: 24582378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchically Ordered Porous and High-Volume Polycaprolactone Microchannel Scaffolds Enhanced Axon Growth in Transected Spinal Cords.
    Shahriari D; Koffler JY; Tuszynski MH; Campana WM; Sakamoto JS
    Tissue Eng Part A; 2017 May; 23(9-10):415-425. PubMed ID: 28107810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect.
    Lai Y; Li Y; Cao H; Long J; Wang X; Li L; Li C; Jia Q; Teng B; Tang T; Peng J; Eglin D; Alini M; Grijpma DW; Richards G; Qin L
    Biomaterials; 2019 Mar; 197():207-219. PubMed ID: 30660996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combined compression molding, heating, and leaching process for fabrication of micro-porous poly(ε-caprolactone) scaffolds.
    Sempertegui ND; Narkhede AA; Thomas V; Rao SS
    J Biomater Sci Polym Ed; 2018 Nov; 29(16):1978-1993. PubMed ID: 30220215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation.
    Jonnalagadda JB; Rivero IV; Dertien JS
    J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peripheral nerve growth within a hydrogel microchannel scaffold supported by a kink-resistant conduit.
    Shahriari D; Shibayama M; Lynam DA; Wolf KJ; Kubota G; Koffler JY; Tuszynski MH; Campana WM; Sakamoto JS
    J Biomed Mater Res A; 2017 Dec; 105(12):3392-3399. PubMed ID: 28804998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanded 3D nanofibre sponge scaffolds by gas-foaming technique enhance peripheral nerve regeneration.
    Rao F; Yuan Z; Li M; Yu F; Fang X; Jiang B; Wen Y; Zhang P
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):491-500. PubMed ID: 30942090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering.
    Vikingsson L; Claessens B; Gómez-Tejedor JA; Gallego Ferrer G; Gómez Ribelles JL
    J Mech Behav Biomed Mater; 2015 Aug; 48():60-69. PubMed ID: 25913609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of bionic tissue engineering cartilage scaffold based on three-dimensional printing and oriented frozen technology.
    Xu Y; Guo X; Yang S; Li L; Zhang P; Sun W; Liu C; Mi S
    J Biomed Mater Res A; 2018 Jun; 106(6):1664-1676. PubMed ID: 29460433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional duck's feet collagen/PLGA scaffold for chondrification: role of pore size and porosity.
    Song JE; Tripathy N; Cha SR; Jeon SH; Kwon SY; Suh DS; Khang G
    J Biomater Sci Polym Ed; 2018; 29(7-9):932-941. PubMed ID: 29047324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated multi-layer 3D-fabrication of PDA/RGD coated graphene loaded PCL nanoscaffold for peripheral nerve restoration.
    Qian Y; Zhao X; Han Q; Chen W; Li H; Yuan W
    Nat Commun; 2018 Jan; 9(1):323. PubMed ID: 29358641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repurposing biodegradable tissue engineering scaffolds for localized chemotherapeutic delivery.
    Cyphert EL; Bil M; von Recum HA; Święszkowski W
    J Biomed Mater Res A; 2020 May; 108(5):1144-1158. PubMed ID: 31971350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity.
    Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.