These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30597399)

  • 1. Solid-state
    Ohashi R; Michal CA; Hamad WY; Nguyen TD; Mizuno M; MacLachlan MJ
    Solid State Nucl Magn Reson; 2019 Feb; 97():31-39. PubMed ID: 30597399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The development of chiral nematic mesoporous materials.
    Kelly JA; Giese M; Shopsowitz KE; Hamad WY; MacLachlan MJ
    Acc Chem Res; 2014 Apr; 47(4):1088-96. PubMed ID: 24694253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tactoid Annealing Improves Order in Self-Assembled Cellulose Nanocrystal Films with Chiral Nematic Structures.
    Tran A; Hamad WY; MacLachlan MJ
    Langmuir; 2018 Jan; 34(2):646-652. PubMed ID: 29286246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral Nematic Structure of Cellulose Nanocrystal Suspensions and Films; Polarized Light and Atomic Force Microscopy.
    Gray DG; Mu X
    Materials (Basel); 2015 Nov; 8(11):7873-7888. PubMed ID: 28793684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal annealing of iridescent cellulose nanocrystal films.
    D'Acierno F; Ohashi R; Hamad WY; Michal CA; MacLachlan MJ
    Carbohydr Polym; 2021 Nov; 272():118468. PubMed ID: 34420727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Anisotropy of Cellulose Nanocrystal Suspensions on Stratification, Domain Structure Formation, and Structural Colors.
    Klockars KW; Tardy BL; Borghei M; Tripathi A; Greca LG; Rojas OJ
    Biomacromolecules; 2018 Jul; 19(7):2931-2943. PubMed ID: 29754482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the iridescence of chiral nematic cellulose nanocrystal films with a vacuum-assisted self-assembly technique.
    Chen Q; Liu P; Nan F; Zhou L; Zhang J
    Biomacromolecules; 2014 Nov; 15(11):4343-50. PubMed ID: 25300554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of chiral nematic films from cellulose nanocrystal suspensions is a two-stage process.
    Mu X; Gray DG
    Langmuir; 2014 Aug; 30(31):9256-60. PubMed ID: 25069681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stacking structure of confined 1-butanol in SBA-15 investigated by solid-state NMR spectroscopy.
    Lin YC; Chou HL; Sarma LS; Hwang BJ
    Chemistry; 2009 Oct; 15(40):10658-65. PubMed ID: 19746482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spin coated cellulose nanocrystal/silver nanoparticle films.
    Fortunati E; Mattioli S; Armentano I; Kenny JM
    Carbohydr Polym; 2014 Nov; 113():394-402. PubMed ID: 25256500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective binding of monovalent cations to the stacking G-quartet structure formed by guanosine 5'-monophosphate: a solid-state NMR study.
    Wong A; Wu G
    J Am Chem Soc; 2003 Nov; 125(45):13895-905. PubMed ID: 14599230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemoselectivity of Pristine Cellulose Nanocrystal Films Driven by Carbohydrate-Carbohydrate Interactions.
    Zhang F; Wang D; Qin H; Feng L; Liang X; Qing G
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13114-13122. PubMed ID: 30880380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral Nematic Cellulose Nanocrystal Films Cooperated with Amino Acids for Tunable Optical Properties.
    Xiao X; Chen J; Ling Z; Guo J; Huang J; Ma J; Jin Z
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Free Volume Determined by Positron Annihilation Lifetime Spectroscopy (PALS) on Gas Permeability of Cellulose Nanocrystal Films.
    Nuruddin M; Chowdhury RA; Lopez-Perez N; Montes FJ; Youngblood JP; Howarter JA
    ACS Appl Mater Interfaces; 2020 May; 12(21):24380-24389. PubMed ID: 32352751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.
    Wang T; Yang H; Kubicki JD; Hong M
    Biomacromolecules; 2016 Jun; 17(6):2210-22. PubMed ID: 27192562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal expansion of self-organized and shear-oriented cellulose nanocrystal films.
    Diaz JA; Wu X; Martini A; Youngblood JP; Moon RJ
    Biomacromolecules; 2013 Aug; 14(8):2900-8. PubMed ID: 23841850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of Cellulose Nanocrystal-Lysozyme Composite Films with Varied Lysozyme Morphology.
    De France KJ; Kummer N; Ren Q; Campioni S; Nyström G
    Biomacromolecules; 2020 Dec; 21(12):5139-5147. PubMed ID: 33253535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale Assembly of Cellulose Nanocrystals during Drying and Redispersion.
    Liu Y; Stoeckel D; Gordeyeva K; Agthe M; Schütz C; Fall AB; Bergström L
    ACS Macro Lett; 2018 Feb; 7(2):172-177. PubMed ID: 35610889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid-state 13C NMR study of na-cellulose complexes.
    Porro F; Bédué O; Chanzy H; Heux L
    Biomacromolecules; 2007 Aug; 8(8):2586-93. PubMed ID: 17661517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local environment and distribution of alkali ions in polyelectrolyte complexes studied by solid-state NMR.
    Causemann S; Schönhoff M; Eckert H
    Phys Chem Chem Phys; 2011 May; 13(19):8967-76. PubMed ID: 21465039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.