BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 30597423)

  • 1. A novel alignment procedure to assess calcified coronary plaques in histopathology, post-mortem computed tomography angiography and optical coherence tomography.
    Precht H; Broersen A; Kitslaar PH; Dijkstra J; Gerke O; Thygesen J; Egstrup K; Leth PM; Hardt-Madsen M; Nielsen B; Falk E; Lambrechtsen J
    Cardiovasc Pathol; 2019; 39():25-29. PubMed ID: 30597423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo coronary lesion differentiation with computed tomography angiography and intravascular ultrasound as compared to optical coherence tomography.
    Wieringa WG; Lexis CP; Lipsic E; van der Werf HW; Burgerhof JG; Hagens VE; Bartels GL; Broersen A; Schurer RA; Tan ES; van der Harst P; van den Heuvel AF; Willems TP; Pundziute G
    J Cardiovasc Comput Tomogr; 2017; 11(2):111-118. PubMed ID: 28169175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diagnostic Accuracy of 320-Row Computed Tomography for Characterizing Coronary Atherosclerotic Plaques: Comparison with Intravascular Optical Coherence Tomography.
    Ybarra LF; Szarf G; Ishikawa W; Chamié D; Caixeta A; Puri R; Perin MA
    Cardiovasc Revasc Med; 2020 May; 21(5):640-646. PubMed ID: 31501019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plaque progression assessed by a novel semi-automated quantitative plaque software on coronary computed tomography angiography between diabetes and non-diabetes patients: A propensity-score matching study.
    Nakanishi R; Ceponiene I; Osawa K; Luo Y; Kanisawa M; Megowan N; Nezarat N; Rahmani S; Broersen A; Kitslaar PH; Dailing C; Budoff MJ
    Atherosclerosis; 2016 Dec; 255():73-79. PubMed ID: 27835741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ex Vivo Assessment of Coronary Atherosclerotic Plaque by Grating-Based Phase-Contrast Computed Tomography: Correlation With Optical Coherence Tomography.
    Habbel C; Hetterich H; Willner M; Herzen J; Steigerwald K; Auweter S; Schüller U; Hausleiter J; Massberg S; Reiser M; Pfeiffer F; Saam T; Bamberg F
    Invest Radiol; 2017 Apr; 52(4):223-231. PubMed ID: 28079701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of monochromatic coronary computed tomography angiography from single-source dual-energy CT on coronary stenosis quantification.
    Stehli J; Clerc OF; Fuchs TA; Possner M; Gräni C; Benz DC; Buechel RR; Kaufmann PA
    J Cardiovasc Comput Tomogr; 2016; 10(2):135-40. PubMed ID: 26754621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized energy of spectral coronary CT angiography for coronary plaque detection and quantification.
    Symons R; Choi Y; Cork TE; Ahlman MA; Mallek M; Bluemke DA; Sandfort V
    J Cardiovasc Comput Tomogr; 2018; 12(2):108-114. PubMed ID: 29397334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partially calcified plaque mimicking the "napkin-ring sign" on coronary CT angiography.
    Utsunomiya D; Oda S; Kidoh M; Yamashita Y
    J Cardiovasc Comput Tomogr; 2017; 11(3):244. PubMed ID: 28131801
    [No Abstract]   [Full Text] [Related]  

  • 9. Clinical application of effective atomic number for classifying non-calcified coronary plaques by dual-energy computed tomography.
    Nakajima S; Ito H; Mitsuhashi T; Kubo Y; Matsui K; Tanaka I; Fukui R; Omori H; Nakaoka T; Sakura H; Ueno E; Machida H
    Atherosclerosis; 2017 Jun; 261():138-143. PubMed ID: 28372786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coronary plaque characteristics in computed tomography and 2-year outcomes: The PREDICT study.
    Yamamoto H; Kihara Y; Kitagawa T; Ohashi N; Kunita E; Iwanaga Y; Kobuke K; Miyazaki S; Kawasaki T; Fujimoto S; Daida H; Fujii T; Sato A; Okimoto T; Kuribayashi S;
    J Cardiovasc Comput Tomogr; 2018; 12(5):436-443. PubMed ID: 30017608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Combined Optical Coherence Tomography and Intravascular Ultrasound Study on Plaque Rupture, Plaque Erosion, and Calcified Nodule in Patients With ST-Segment Elevation Myocardial Infarction: Incidence, Morphologic Characteristics, and Outcomes After Percutaneous Coronary Intervention.
    Higuma T; Soeda T; Abe N; Yamada M; Yokoyama H; Shibutani S; Vergallo R; Minami Y; Ong DS; Lee H; Okumura K; Jang IK
    JACC Cardiovasc Interv; 2015 Aug; 8(9):1166-1176. PubMed ID: 26117464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of calcium burden by coronary CT angiography compared to optical coherence tomography.
    Monizzi G; Sonck J; Nagumo S; Buytaert D; Van Hoe L; Grancini L; Bartorelli AL; Vanhoenacker P; Simons P; Bladt O; Wyffels E; De Bruyne B; Andreini D; Collet C
    Int J Cardiovasc Imaging; 2020 Dec; 36(12):2393-2402. PubMed ID: 33205340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incremental prognostic value of quantitative plaque assessment in coronary CT angiography during 5 years of follow up.
    Nadjiri J; Hausleiter J; Jähnichen C; Will A; Hendrich E; Martinoff S; Hadamitzky M
    J Cardiovasc Comput Tomogr; 2016; 10(2):97-104. PubMed ID: 26837235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association of skin autofluorescence with plaque vulnerability evaluated by optical coherence tomography in patients with cardiovascular disease.
    Fujino Y; Attizzani GF; Tahara S; Wang W; Takagi K; Naganuma T; Yabushita H; Tanaka K; Sato T; Watanabe Y; Mitomo S; Kurita N; Ishiguro H; Nakamura S; Hozawa K; Bezerra HG; Yamagishi SI; Nakamura S
    Atherosclerosis; 2018 Jul; 274():47-53. PubMed ID: 29751284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative coronary plaque analysis predicts high-risk plaque morphology on coronary computed tomography angiography: results from the ROMICAT II trial.
    Liu T; Maurovich-Horvat P; Mayrhofer T; Puchner SB; Lu MT; Ghemigian K; Kitslaar PH; Broersen A; Pursnani A; Hoffmann U; Ferencik M
    Int J Cardiovasc Imaging; 2018 Feb; 34(2):311-319. PubMed ID: 28803421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Offline fusion of co-registered intravascular ultrasound and frequency domain optical coherence tomography images for the analysis of human atherosclerotic plaques.
    Räber L; Heo JH; Radu MD; Garcia-Garcia HM; Stefanini GG; Moschovitis A; Dijkstra J; Kelbaek H; Windecker S; Serruys PW
    EuroIntervention; 2012 May; 8(1):98-108. PubMed ID: 22580254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing Percutaneous Coronary Intervention in Calcified Lesions: Insights From Optical Coherence Tomography of Atherectomy.
    Mehanna E; Abbott JD; Bezerra HG
    Circ Cardiovasc Interv; 2018 May; 11(5):e006813. PubMed ID: 29743161
    [No Abstract]   [Full Text] [Related]  

  • 18. In vivo optical coherence tomography imaging and histopathology of healed coronary plaques.
    Shimokado A; Matsuo Y; Kubo T; Nishiguchi T; Taruya A; Teraguchi I; Shiono Y; Orii M; Tanimoto T; Yamano T; Ino Y; Hozumi T; Tanaka A; Muragaki Y; Akasaka T
    Atherosclerosis; 2018 Aug; 275():35-42. PubMed ID: 29859471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does spotty calcification attenuate the response of nonculprit plaque to statin therapy?: A serial optical coherence tomography study.
    Afolabi A; Mustafina I; Zhao L; Li L; Sun R; Hu S; Zhang S; Jia H; Guilio G; Yu B
    Catheter Cardiovasc Interv; 2018 Feb; 91(S1):582-590. PubMed ID: 29359491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of optical coherence tomography-detected calcified nodules using coronary computed tomography angiography.
    Sugiura J; Watanabe M; Nobuta S; Okamura A; Kyodo A; Nakamura T; Nogi K; Ishihara S; Hashimoto Y; Ueda T; Seno A; Onoue K; Soeda T; Saito Y
    Sci Rep; 2022 Dec; 12(1):22296. PubMed ID: 36566340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.