BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 3059767)

  • 1. Identification and characterization of a non-interferon antileishmanial macrophage activating factor (antileishmanial MAF).
    Van Niel A; Zacks SE; David JR; Remold HG; Weiser WY
    Adv Exp Med Biol; 1988; 239():231-7. PubMed ID: 3059767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombinant human granulocyte/macrophage colony-stimulating factor activates intracellular killing of Leishmania donovani by human monocyte-derived macrophages.
    Weiser WY; Van Niel A; Clark SC; David JR; Remold HG
    J Exp Med; 1987 Nov; 166(5):1436-46. PubMed ID: 3119759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a unique T cell-derived lymphokine that primes macrophages for tumor cytotoxicity.
    Kern DE; Grabstein KH; Okuno K; Schreiber RD; Greenberg PD
    J Immunol; 1989 Dec; 143(12):4308-16. PubMed ID: 2687379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of a human T cell line-derived lymphokine with MAF-like activity distinct from interferon-gamma.
    Lee JC; Rebar L; Young P; Ruscetti FW; Hanna N; Poste G
    J Immunol; 1986 Feb; 136(4):1322-8. PubMed ID: 3003193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. T-cell hybridomas reveal two distinct mechanisms of antileishmanial defense.
    Sypek JP; Wyler DJ
    Infect Immun; 1990 May; 58(5):1146-52. PubMed ID: 2323812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partial purification and characterization of a human lymphokine which induces antileishmanial activity in mouse macrophages.
    Buchmuller Y; Weiser WY; Remold HG
    Cell Immunol; 1985 Jan; 90(1):242-50. PubMed ID: 3881189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A lymphokine distinct from interferon-gamma that activates human monocytes to kill Leishmania donovani in vitro.
    Hoover DL; Finbloom DS; Crawford RM; Nacy CA; Gilbreath M; Meltzer MS
    J Immunol; 1986 Feb; 136(4):1329-33. PubMed ID: 3080522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constitutive production of novel macrophage-activating factor(s) by human T cell hybridomas.
    Taniyama T; Taki S; Akiyama Y; Yoshizawa K; Hamuro J; Arai K; Wong GG
    Clin Invest Med; 1990 Dec; 13(6):305-12. PubMed ID: 2127737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of lymphokines in regulation of macrophage differentiation.
    Onozaki K; Akagawa KS; Haga S; Miura K; Hashimoto T; Tokunaga T
    Cell Immunol; 1983 Feb; 76(1):129-36. PubMed ID: 6339080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lymphocyte supernatant-induced human monocyte tumoricidal activity: dependence on the presence of gamma-interferon.
    Sadlik JR; Hoyer M; Leyko MA; Horvat R; Parmely M; Whitacre C; Zwilling B; Rinehart JJ
    Cancer Res; 1985 May; 45(5):1940-5. PubMed ID: 3921233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. T-cell hybridoma production of macrophage activation factor (MAF) I. Separation of MAF from interferon gamma.
    Ratliff TL; Thomasson DL; McCool RE; Catalona WJ
    J Reticuloendothel Soc; 1982 May; 31(5):393-7. PubMed ID: 6181257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity.
    Nathan CF; Murray HW; Wiebe ME; Rubin BY
    J Exp Med; 1983 Sep; 158(3):670-89. PubMed ID: 6411853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of human monocyte cytotoxicity by natural and recombinant immune interferon.
    Le J; Prensky W; Yip YK; Chang Z; Hoffman T; Stevenson HC; Balazs I; Sadlik JR; Vilcek J
    J Immunol; 1983 Dec; 131(6):2821-6. PubMed ID: 6417232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a T cell hybridoma that produces large quantities of macrophage-activating factor.
    Schreiber RD; Altman A; Katz DH
    J Exp Med; 1982 Sep; 156(3):677-89. PubMed ID: 7050288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishment of a human T-cell hybridoma that produces human macrophage activating factor for superoxide production and translation of messenger RNA of the factor in Xenopus laevis oocyte.
    Miyamoto D; Nakamura N; Ishii Y; Kobayashi Y; Osawa T
    Mol Immunol; 1987 Mar; 24(3):239-45. PubMed ID: 3039355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological and biochemical characterization of macrophage activating factor (MAF) in murine lymphocytes: physiocochemical similarity of MAF to gamma interferon (IFN-gamma).
    Fukazawa Y; Kagaya K; Miura H; Shinoda T; Natori K; Yamazaki S
    Microbiol Immunol; 1984; 28(6):691-702. PubMed ID: 6434908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of human macrophage activation factor (MAF) prepared from antigen-stimulated lymphocytes.
    Cameron DJ
    J Clin Lab Immunol; 1984 Jan; 13(1):47-50. PubMed ID: 6371237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human macrophage-activating factors for cytotoxicity. I. Establishment of a human T-cell hybridoma that produces macrophage-activating factors for cytotoxicity.
    Higuchi M; Sugimoto M; Kobayashi Y; Osawa T
    Microbiol Immunol; 1987; 31(5):469-79. PubMed ID: 3116371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on macrophage-activating factor (MAF) in antitumor immune responses. II. Molecular characterization of MAF produced by the tumor-immune Lyt-1+2- T cell subset.
    Nakajima H; Izumi Y; Sugihara S; Satoh Y; Isumi S; Gotoh T; Fujiwara H; Hamaoka T
    Cancer Immunol Immunother; 1987; 25(3):201-8. PubMed ID: 3119213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macrophage activation for antileishmanial defense by an apparently novel mechanism.
    Wyler DJ; Beller DI; Sypek JP
    J Immunol; 1987 Feb; 138(4):1246-9. PubMed ID: 3100630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.