These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 3059775)

  • 1. Induction of immunosuppressive B-lymphocytes with components of Candida albicans.
    Cuff CF; Packer B; Rivas V; Rogers CM; Cassone A; Donnelly R; Rogers TJ
    Adv Exp Med Biol; 1988; 239():367-78. PubMed ID: 3059775
    [No Abstract]   [Full Text] [Related]  

  • 2. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells.
    Netea MG; Sutmuller R; Hermann C; Van der Graaf CA; Van der Meer JW; van Krieken JH; Hartung T; Adema G; Kullberg BJ
    J Immunol; 2004 Mar; 172(6):3712-8. PubMed ID: 15004175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A further characterization of Candida albicans-induced suppressor B-cell activity.
    Cuff CF; Packer BJ; Rogers TJ
    Immunology; 1989 Sep; 68(1):80-6. PubMed ID: 2530158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of a Candida albicans delayed-type hypersensitivity (DTH) model in female juvenile rats for use in immunotoxicity assessments.
    Collinge M; Thorn M; Peachee V; White K
    J Immunotoxicol; 2013; 10(4):341-8. PubMed ID: 23282408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. B cell-independent selection of memory T cells after mucosal immunization with Candida albicans.
    Jones-Carson J; Vazquez-Torres FA; Balish E
    J Immunol; 1997 May; 158(9):4328-35. PubMed ID: 9126995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of the Candida albicans delayed-type hypersensitivity (DTH) model in the female B₆C₃F₁ mouse for use in immunotoxicological investigations.
    White KL; McLoughlin CE; Auttachoat W; Smith MJ
    J Immunotoxicol; 2012; 9(2):141-7. PubMed ID: 22339419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retention of acquired resistance to C. albicans by mice during short term immunosuppression.
    van Wyk CW; van der Bijl P
    J Dent Assoc S Afr; 1994 Jan; 49(1):15-20. PubMed ID: 9508970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Letter: Decreased circulating T cells during viral pharyngitis.
    Mangi RJ; Dwyer JM; Niederman JC; Kantor FS
    Ann Intern Med; 1974 Oct; 81(4):557-8. PubMed ID: 4606730
    [No Abstract]   [Full Text] [Related]  

  • 9. Differential role of NK cells against Candida albicans infection in immunocompetent or immunocompromised mice.
    Quintin J; Voigt J; van der Voort R; Jacobsen ID; Verschueren I; Hube B; Giamarellos-Bourboulis EJ; van der Meer JW; Joosten LA; Kurzai O; Netea MG
    Eur J Immunol; 2014 Aug; 44(8):2405-14. PubMed ID: 24802993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution and function of T- and B-cell subpopulations in sarcoidosis.
    Fernandez B; Press P; Girard JP
    Ann N Y Acad Sci; 1976; 278():80-7. PubMed ID: 786130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Immunology of the pustular bacterid of Andrews. I Immune responses (author's transl)].
    Djawari D; Deinlein E; Hornstein OP
    Dermatol Monatsschr; 1980 May; 166(5):297-304. PubMed ID: 6998784
    [No Abstract]   [Full Text] [Related]  

  • 12. Immunosuppressive effect of cyclosporin A on resistance to systemic infection with Candida albicans.
    Vecchiarelli A; Cenci E; Marconi P; Rossi R; Riccardi C; Bistoni F
    J Med Microbiol; 1989 Nov; 30(3):183-92. PubMed ID: 2511321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [T- and B-lymphocytes].
    Petrov RV; Cheredeev AN
    Usp Sovrem Biol; 1974; 77(1):90-105. PubMed ID: 4619259
    [No Abstract]   [Full Text] [Related]  

  • 14. Generation of suppressor cells in the response of human lymphocytes to a polysaccharide from Candida albicans.
    Piccolella E; Lombardi G; Morelli R
    J Immunol; 1981 Jun; 126(6):2151-5. PubMed ID: 6453156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CpG oligodeoxynucleotides increase the susceptibility of normal mice to infection by Candida albicans.
    Ito S; Pedras-Vasconcelos J; Klinman DM
    Infect Immun; 2005 Sep; 73(9):6154-6. PubMed ID: 16113339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antigen responsiveness of an established human B-lymphoid cell line. I. Evidence for a surface receptor for Candida antigen detected by direct migration inhibition.
    Baskin BL; Meltz SK; Glade PR
    Cell Immunol; 1976 Oct; 26(2):264-73. PubMed ID: 788925
    [No Abstract]   [Full Text] [Related]  

  • 17. [Toxic and immunotropic effect of filtrates of Candida albicans culture].
    Jakoniuk P; Borowski J; Kaczmarski W; Citko J
    Med Dosw Mikrobiol; 1983; 35(3-4):215-31. PubMed ID: 6374335
    [No Abstract]   [Full Text] [Related]  

  • 18. Suppressor T cells role in the unresponsiveness to Candida albicans in chronic mucocutaneous candidiasis.
    Barnaba V; Zaccari C; Levrero M; Balsano F
    Boll Ist Sieroter Milan; 1985; 64(2):126-30. PubMed ID: 3161525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell electrophoretic studies on the cellular immune response to Candida albicans in rabbits.
    Jenssen HL; Köhler H; Kaben U; Westphal HJ
    Sabouraudia; 1975 Jul; 13(2):123-31. PubMed ID: 1099697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lymphokine-activated killer (LAK)-like cells induced in mice after repeated intraperitoneal injections of inactivated Candida albicans.
    Scaringi L; Rosati M; Bistoni F; Cassone A; Marconi P
    J Chemother; 1989 Jul; 1(4 Suppl):446-8. PubMed ID: 16312479
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.