BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30597757)

  • 1. Hydrophobicity versus electrophilicity: A new protocol toward quantitative structure-toxicity relationship.
    Pal R; Jana G; Sural S; Chattaraj PK
    Chem Biol Drug Des; 2019 Jun; 93(6):1083-1095. PubMed ID: 30597757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QSTR studies regarding the ECOSAR toxicity of benzene-carboxylic acid' esters to fathead minnow fish (Pimephales promelas).
    Tarko L; Putz MV; Ionascu C; Putz AM
    Curr Comput Aided Drug Des; 2014; 10(2):99-106. PubMed ID: 24724900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Structure-activity Relationship Analysis for Predicting Lipophilicity of Aniline Derivatives (Including some Pharmaceutical Compounds).
    Rezaei M; Mohammadinasab E; Esfahani TM
    Comb Chem High Throughput Screen; 2019 Aug; 22(5):333-345. PubMed ID: 31446891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on quantitative structure-toxicity relationships of benzene derivatives acting by narcosis.
    Khadikar PV; Mather KC; Singh S; Phadnis A; Shrivastava A; Mandaloi M
    Bioorg Med Chem; 2002 Jun; 10(6):1761-6. PubMed ID: 11937334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QSAR model for predicting the toxicity of organic compounds to fathead minnow.
    Jia Q; Zhao Y; Yan F; Wang Q
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):35420-35428. PubMed ID: 30350137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QSAR study of the acute toxicity to fathead minnow based on a large dataset.
    Wu X; Zhang Q; Hu J
    SAR QSAR Environ Res; 2016; 27(2):147-64. PubMed ID: 26911563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of a QSAR model for acute toxicity.
    Pavan M; Netzeva TI; Worth AP
    SAR QSAR Environ Res; 2006 Apr; 17(2):147-71. PubMed ID: 16644555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QSTR with extended topochemical atom (ETA) indices. 15. Development of predictive models for toxicity of organic chemicals against fathead minnow using second-generation ETA indices.
    Roy K; Das RN
    SAR QSAR Environ Res; 2012 Jan; 23(1-2):125-40. PubMed ID: 22292780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of reliable quantitative structure-toxicity relationship models for toxicity prediction of benzene derivatives using semiempirical descriptors.
    Singh A; Kumar S; Kapoor A; Kumar P; Kumar A
    Toxicol Mech Methods; 2023 Mar; 33(3):222-232. PubMed ID: 36042574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative structure-activity relationships (QSARs) using the novel marine algal toxicity data of phenols.
    Ertürk MD; Saçan MT; Novic M; Minovski N
    J Mol Graph Model; 2012 Sep; 38():90-100. PubMed ID: 23085159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophilicity as a possible descriptor for toxicity prediction.
    Roy DR; Parthasarathi R; Maiti B; Subramanian V; Chattaraj PK
    Bioorg Med Chem; 2005 May; 13(10):3405-12. PubMed ID: 15848752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Structure-Toxicity Relationship in Bioactive Molecules from a Conceptual DFT Perspective.
    Pal R; Patra SG; Chattaraj PK
    Pharmaceuticals (Basel); 2022 Nov; 15(11):. PubMed ID: 36355555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study on prediction of the bio-toxicity of substituted benzene based on artificial neural network.
    Gao DW; Wang P; Liang H; Peng YZ
    J Environ Sci Health B; 2003 Sep; 38(5):571-9. PubMed ID: 12929716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow).
    Papa E; Villa F; Gramatica P
    J Chem Inf Model; 2005; 45(5):1256-66. PubMed ID: 16180902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-QSAR studies on the toxicity of substituted benzenes to Tetrahymena pyriformis: CoMFA, CoMSIA and VolSurf approaches.
    Salahinejad M; Ghasemi JB
    Ecotoxicol Environ Saf; 2014 Jul; 105():128-34. PubMed ID: 24636479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local and global quantitative structure-activity relationship modeling and prediction for the baseline toxicity.
    Yuan H; Wang Y; Cheng Y
    J Chem Inf Model; 2007; 47(1):159-69. PubMed ID: 17238261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of counter propagation neural network models for predictive toxicology according to the OECD principles: a case study.
    Vracko M; Bandelj V; Barbieri P; Benfenati E; Chaudhry Q; Cronin M; Devillers J; Gallegos A; Gini G; Gramatica P; Helma C; Mazzatorta P; Neagu D; Netzeva T; Pavan M; Patlewicz G; Randić M; Tsakovska I; Worth A
    SAR QSAR Environ Res; 2006 Jun; 17(3):265-84. PubMed ID: 16815767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative performance of descriptors in a multiple linear and Kriging models: a case study on the acute toxicity of organic chemicals to algae.
    Tugcu G; Yilmaz HB; Saçan MT
    Environ Sci Pollut Res Int; 2014 Oct; 21(20):11924-32. PubMed ID: 24946708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mode of action-based local QSAR modeling for the prediction of acute toxicity in the fathead minnow.
    Yuan H; Wang YY; Cheng YY
    J Mol Graph Model; 2007 Jul; 26(1):327-35. PubMed ID: 17224289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interspecies quantitative structure-activity relationship model for aldehydes: aquatic toxicity.
    Dimitrov S; Koleva Y; Schultz TW; Walker JD; Mekenyan O
    Environ Toxicol Chem; 2004 Feb; 23(2):463-70. PubMed ID: 14982395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.