BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 30597934)

  • 21. Nanofibrous Kevlar Aerogel Threads for Thermal Insulation in Harsh Environments.
    Liu Z; Lyu J; Fang D; Zhang X
    ACS Nano; 2019 May; 13(5):5703-5711. PubMed ID: 31042355
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental Characterization of the Thermal Conductivity and Microstructure of Opacifier-Fiber-Aerogel Composite.
    Zhang H; Zhang C; Ji W; Wang X; Li Y; Tao W
    Molecules; 2018 Aug; 23(9):. PubMed ID: 30200271
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Facile Method for Fabricating a Monolithic Mullite Fiber-Reinforced Alumina Aerogel with Excellent Mechanical and Thermal Properties.
    Liu L; Wang X; Zhang Z; Shi Y; Zhao Y; Shen S; Yao X; Shen J
    Gels; 2022 Jun; 8(6):. PubMed ID: 35735723
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties.
    Seantier B; Bendahou D; Bendahou A; Grohens Y; Kaddami H
    Carbohydr Polym; 2016 Mar; 138():335-48. PubMed ID: 26794770
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polypropylene/Silica Aerogel Composite Incorporating a Conformal Coating of Methyltrimethoxysilane-Based Aerogel.
    Choi H; Parale VG; Lee KY; Nah HY; Driss Z; Driss D; Bouabidi A; Euchy S; Park HH
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1376-1381. PubMed ID: 30469191
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robust monolithic polymer(resorcinol-formaldehyde) reinforced alumina aerogel composites with mutually interpenetrating networks.
    Zhong Y; Shao G; Wu X; Kong Y; Wang X; Cui S; Shen X
    RSC Adv; 2019 Jul; 9(40):22942-22949. PubMed ID: 35514471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silica Aerogel-Rubber Composite: A Sustainable Alternative for Buildings' Thermal Insulation.
    Alves P; Dias DA; Pontinha ADR
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flexible and Compressible Nanostructure-Assembled Aramid Nanofiber/Silica Composites Aerogel.
    Zhang C; Li J; Jiang J; Hu X; Yang S; Wang K; Guo A; Du H
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Comparative Thermoacoustic Insulation Study of Silica Aerogels Reinforced with Reclaimed Textile Fibres: Cotton, Polyester and Wool.
    Linhares T; Carneiro VH; Pessoa de Amorim MT; Durães L
    Gels; 2023 Jul; 9(7):. PubMed ID: 37504426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cellulose Diacetate Aerogels with Low Drying Shrinkage, High-Efficient Thermal Insulation, and Superior Mechanical Strength.
    Zhang S; Lu K; Hu Y; Xu G; Wang J; Liao Y; Yu S
    Gels; 2024 Mar; 10(3):. PubMed ID: 38534628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Double-Network MK Resin-Modified Silica Aerogels for High-Temperature Thermal Insulation.
    Xu L; Zhu W; Chen Z; Su D
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):44238-44247. PubMed ID: 37672731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Facile Preparation of High Strength Silica Aerogel Composites via a Water Solvent System and Ambient Pressure Drying without Surface Modification or Solvent Replacement.
    Du D; Liu F; Jiang Y; Feng J; Li L; Feng J
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon aerogel composites prepared by ambient drying and using oxidized polyacrylonitrile fibers as reinforcements.
    Feng J; Zhang C; Feng J; Jiang Y; Zhao N
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4796-803. PubMed ID: 22047011
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermal and Mechanical Performances of the Superflexible, Hydrophobic, Silica-Based Aerogel for Thermal Insulation at Ultralow Temperature.
    Zhao Z; Cui Y; Kong Y; Ren J; Jiang X; Yan W; Li M; Tang J; Liu X; Shen X
    ACS Appl Mater Interfaces; 2021 May; 13(18):21286-21298. PubMed ID: 33904728
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microtexture, microstructure evolution, and thermal insulation properties of Si
    Yang H; Ye F
    RSC Adv; 2022 Apr; 12(19):12226-12234. PubMed ID: 35481083
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polyimide Aerogel Fibers with Superior Flame Resistance, Strength, Hydrophobicity, and Flexibility Made via a Universal Sol-Gel Confined Transition Strategy.
    Li X; Dong G; Liu Z; Zhang X
    ACS Nano; 2021 Mar; 15(3):4759-4768. PubMed ID: 33636972
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Continuous, Strong, Porous Silk Firoin-Based Aerogel Fibers toward Textile Thermal Insulation.
    Yang H; Wang Z; Liu Z; Cheng H; Li C
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31752126
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal Failure Analysis of Fiber-Reinforced Silica Aerogels under Liquid Nitrogen Thermal Shock.
    Du A; Liu M; Huang S; Li C; Zhou B
    Molecules; 2018 Jun; 23(7):. PubMed ID: 29937521
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cogel Strategy for the Preparation of a "Thorn"-Like Porous Halloysite/Gelatin Composite Aerogel with Excellent Mechanical Properties and Thermal Insulation.
    Zhao F; Liu H; Li H; Cao Y; Hua X; Ge S; He Y; Jiang C; He D
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17763-17773. PubMed ID: 35384643
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aerogel Perfusion-Prepared h-BN/CNF Composite Film with Multiple Thermally Conductive Pathways and High Thermal Conductivity.
    Wang X; Yu Z; Jiao L; Bian H; Yang W; Wu W; Xiao H; Dai H
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31340451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.