These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30597988)

  • 1. A Time-Varying Filter for Doppler Compensation Applied to Underwater Acoustic OFDM.
    Roudsari Mirhedayati H; Bousquet JF
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30597988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication.
    MinhHai T; Rie S; Suzuki T; Wada T
    ScientificWorldJournal; 2016; 2016():7528353. PubMed ID: 27057558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OFDM System Design for Measured Ultrasonic Underwater Channels.
    Cobacho-Ruiz P; Cañete FJ; Martos-Naya E; Fernández-Plazaola U
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy Harvesting for TDS-OFDM in NOMA-Based Underwater Communication Systems.
    Esmaiel H; Sun H
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decision fractional fast Fourier transform Doppler compensation in underwater acoustic orthogonal frequency division multiplexing.
    Ma X; Zheng C
    J Acoust Soc Am; 2016 Nov; 140(5):EL429. PubMed ID: 27908032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orthogonal Frequency Division Multiplexing Techniques Comparison for Underwater Optical Wireless Communication Systems.
    Lian J; Gao Y; Wu P; Lian D
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian Learning-Based Clustered-Sparse Channel Estimation for Time-Varying Underwater Acoustic OFDM Communication.
    Wang S; Liu M; Li D
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Underwater Time Reversal Communication Method Using Symbol-Based Doppler Compensation with a Single Sound Pressure Sensor.
    Zhao A; Zeng C; Hui J; Ma L; Bi X
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30274286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time Adaptive Modulation Schemes for Underwater Acoustic OFDM Communication.
    Barua S; Rong Y; Nordholm S; Chen P
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HW/SW Platform for Measurement and Evaluation of Ultrasonic Underwater Communications.
    Fernández-Plazaola U; López-Fernández J; Martos-Naya E; Paris JF; Cañete FJ
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Space-frequency coded orthogonal signal-division multiplexing over underwater acoustic channels.
    Han J; Shi W; Leus G
    J Acoust Soc Am; 2017 Jun; 141(6):EL513. PubMed ID: 28618824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iterative double-differential direct-sequence spread spectrum reception in underwater acoustic channel with time-varying Doppler shifts.
    Sun D; Wu J; Hong X; Liu C; Cui H; Si B
    J Acoust Soc Am; 2023 Feb; 153(2):1027. PubMed ID: 36859115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Source motion detection, estimation, and compensation for underwater acoustics inversion by wideband ambiguity lag-Doppler filtering.
    Josso NF; Ioana C; Mars JI; Gervaise C
    J Acoust Soc Am; 2010 Dec; 128(6):3416-25. PubMed ID: 21218875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Underwater optical wireless communication performance enhancement using 4D 8PAM trellis-coded modulation OFDM with DFT precoding.
    Xu L; He J; Zhou Z; Xiao Y
    Appl Opt; 2022 Apr; 61(10):2483-2489. PubMed ID: 35471312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coded-GFDM for Reliable Communication in Underwater Acoustic Channels.
    Murad M; Tasadduq IA; Otero P
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple and effective noise whitening method for underwater acoustic orthogonal frequency division multiplexing.
    Berger CR; Chen W; Zhou S; Huang J
    J Acoust Soc Am; 2010 Apr; 127(4):2358-67. PubMed ID: 20370018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doppler-free coherent detection using period-one nonlinear dynamics of semiconductor lasers for OFDM-RoF links.
    Hung YH; Yan JH; Feng KM; Hwang SK
    Opt Lett; 2019 Feb; 44(3):602-605. PubMed ID: 30702689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmission of OFDM wired-wireless quintuple-play services along WDM LR-PONs using centralized broadband impairment compensation.
    Alves TM; Morant M; Cartaxo AV; Llorente R
    Opt Express; 2012 Jun; 20(13):13748-61. PubMed ID: 22714440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical OFDM for SiPM-Based Underwater Optical Wireless Communication Links.
    Essalih T; Khalighi MA; Hranilovic S; Akhouayri H
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33114360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network.
    Saotome R; Hai TM; Matsuda Y; Suzuki T; Wada T
    ScientificWorldJournal; 2015; 2015():841750. PubMed ID: 26351656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.