BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 30598000)

  • 1. Genomic Features and Insights into the Taxonomy, Virulence, and Benevolence of Plant-Associated
    Mannaa M; Park I; Seo YS
    Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30598000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative genome-wide analysis reveals that Burkholderia contaminans MS14 possesses multiple antimicrobial biosynthesis genes but not major genetic loci required for pathogenesis.
    Deng P; Wang X; Baird SM; Showmaker KC; Smith L; Peterson DG; Lu S
    Microbiologyopen; 2016 Jun; 5(3):353-69. PubMed ID: 26769582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The complete genome of Burkholderia phenoliruptrix strain BR3459a, a symbiont of Mimosa flocculosa: highlighting the coexistence of symbiotic and pathogenic genes.
    Zuleta LF; Cunha Cde O; de Carvalho FM; Ciapina LP; Souza RC; Mercante FM; de Faria SM; Baldani JI; Straliotto R; Hungria M; de Vasconcelos AT
    BMC Genomics; 2014 Jun; 15(1):535. PubMed ID: 24972629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant-associated symbiotic Burkholderia species lack hallmark strategies required in mammalian pathogenesis.
    Angus AA; Agapakis CM; Fong S; Yerrapragada S; Estrada-de los Santos P; Yang P; Song N; Kano S; Caballero-Mellado J; de Faria SM; Dakora FD; Weinstock G; Hirsch AM
    PLoS One; 2014; 9(1):e83779. PubMed ID: 24416172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic Comparison of Insect Gut Symbionts from Divergent
    Takeshita K; Kikuchi Y
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32635398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative genomic analysis of two Burkholderia glumae strains from different geographic origins reveals a high degree of plasticity in genome structure associated with genomic islands.
    Francis F; Kim J; Ramaraj T; Farmer A; Rush MC; Ham JH
    Mol Genet Genomics; 2013 Apr; 288(3-4):195-203. PubMed ID: 23563926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prevalence of an Insect-Associated Genomic Region in Environmentally Acquired
    Stillson PT; Baltrus DA; Ravenscraft A
    Appl Environ Microbiol; 2022 May; 88(9):e0250221. PubMed ID: 35435710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The eroded genome of a Psychotria leaf symbiont: hypotheses about lifestyle and interactions with its plant host.
    Carlier AL; Eberl L
    Environ Microbiol; 2012 Oct; 14(10):2757-69. PubMed ID: 22548823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional and genomic insights into the pathogenesis of Burkholderia species to rice.
    Naughton LM; An SQ; Hwang I; Chou SH; He YQ; Tang JL; Ryan RP; Dow JM
    Environ Microbiol; 2016 Mar; 18(3):780-90. PubMed ID: 26690879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two Types of Threonine-Tagged Lipopeptides Synergize in Host Colonization by Pathogenic Burkholderia Species.
    Thongkongkaew T; Ding W; Bratovanov E; Oueis E; Garcı A-Altares MA; Zaburannyi N; Harmrolfs K; Zhang Y; Scherlach K; Müller R; Hertweck C
    ACS Chem Biol; 2018 May; 13(5):1370-1379. PubMed ID: 29669203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the direction of evolution in Burkholderia glumae through comparative genomics.
    Lee HH; Park J; Kim J; Park I; Seo YS
    Curr Genet; 2016 Feb; 62(1):115-23. PubMed ID: 26454852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the history of the legume-betaproteobacterial symbiosis.
    Angus AA; Hirsch AM
    Mol Ecol; 2010 Jan; 19(1):28-30. PubMed ID: 20078769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of an endofungal lifestyle: Deductions from the Burkholderia rhizoxinica genome.
    Lackner G; Moebius N; Partida-Martinez LP; Boland S; Hertweck C
    BMC Genomics; 2011 May; 12():210. PubMed ID: 21539752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The genus burkholderia: analysis of 56 genomic sequences.
    Ussery DW; Kiil K; Lagesen K; Sicheritz-Pontén T; Bohlin J; Wassenaar TM
    Genome Dyn; 2009; 6():140-157. PubMed ID: 19696499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MarR Family Transcription Factors from
    Gupta A; Pande A; Sabrin A; Thapa SS; Gioe BW; Grove A
    Microbiol Mol Biol Rev; 2019 Mar; 83(1):. PubMed ID: 30487164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome sequencing and traits analysis of Burkholderia strains reveal a promising biocontrol effect against grey mould disease in grapevine (Vitis vinifera L.).
    Esmaeel Q; Jacquard C; Clément C; Sanchez L; Ait Barka E
    World J Microbiol Biotechnol; 2019 Feb; 35(3):40. PubMed ID: 30739227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic patterns of pathogen evolution revealed by comparison of Burkholderia pseudomallei, the causative agent of melioidosis, to avirulent Burkholderia thailandensis.
    Yu Y; Kim HS; Chua HH; Lin CH; Sim SH; Lin D; Derr A; Engels R; DeShazer D; Birren B; Nierman WC; Tan P
    BMC Microbiol; 2006 May; 6():46. PubMed ID: 16725056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Common features of environmental and potentially beneficial plant-associated Burkholderia.
    Suárez-Moreno ZR; Caballero-Mellado J; Coutinho BG; Mendonça-Previato L; James EK; Venturi V
    Microb Ecol; 2012 Feb; 63(2):249-66. PubMed ID: 21850446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome rearrangements and selection in multi-chromosome bacteria Burkholderia spp.
    Bochkareva OO; Moroz EV; Davydov II; Gelfand MS
    BMC Genomics; 2018 Dec; 19(1):965. PubMed ID: 30587126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Genomic Insights into Endofungal Lifestyles of Two Bacterial Endosymbionts, Mycoavidus cysteinexigens and Burkholderia rhizoxinica.
    Sharmin D; Guo Y; Nishizawa T; Ohshima S; Sato Y; Takashima Y; Narisawa K; Ohta H
    Microbes Environ; 2018 Mar; 33(1):66-76. PubMed ID: 29540638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.