These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 30598001)

  • 1. Light Concentration by Metal-Dielectric Micro-Resonators for SERS Sensing.
    Sarychev AK; Ivanov A; Lagarkov A; Barbillon G
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30598001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light localization and SERS in tip-shaped silicon metasurface.
    Lagarkov A; Boginskaya I; Bykov I; Budashov I; Ivanov A; Kurochkin I; Ryzhikov I; Rodionov I; Sedova M; Zverev A; Sarychev AK
    Opt Express; 2017 Jul; 25(15):17021-17038. PubMed ID: 28789200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A planar plasmonic nano-gap and its array for enhancing light-matter interactions at the nanoscale.
    Zhang L; Wang X; Chen H; Liu C; Deng S
    Nanoscale; 2022 Sep; 14(34):12257-12264. PubMed ID: 35968906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.
    Payton JL; Morton SM; Moore JE; Jensen L
    Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabry-Perot Cavity Control for Tunable Raman Scattering.
    Kim T; Lee J; Yu ES; Lee S; Woo H; Kwak J; Chung S; Choi I; Ryu YS
    Small; 2023 Jul; 19(29):e2207003. PubMed ID: 37017491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid Dielectric-loaded Nanoridge Plasmonic Waveguide for Low-Loss Light Transmission at the Subwavelength Scale.
    Zhang B; Bian Y; Ren L; Guo F; Tang SY; Mao Z; Liu X; Sun J; Gong J; Guo X; Huang TJ
    Sci Rep; 2017 Jan; 7():40479. PubMed ID: 28091583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid Metal-Dielectric-Metal Sandwiches for SERS Applications.
    Tatmyshevskiy MK; Yakubovsky DI; Kapitanova OO; Solovey VR; Vyshnevyy AA; Ermolaev GA; Klishin YA; Mironov MS; Voronov AA; Arsenin AV; Volkov VS; Novikov SM
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchically Assembled Plasmonic Metal-Dielectric-Metal Hybrid Nano-Architectures for High-Sensitivity SERS Detection.
    Pandey P; Seo MK; Shin KH; Lee YW; Sohn JI
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes.
    Lee JH; You MH; Kim GH; Nam JM
    Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis Methods and Optical Sensing Applications of Plasmonic Metal Nanoparticles Made from Rhodium, Platinum, Gold, or Silver.
    Demishkevich E; Zyubin A; Seteikin A; Samusev I; Park I; Hwangbo CK; Choi EH; Lee GJ
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering.
    Wang AX; Kong X
    Materials (Basel); 2015 Jun; 8(6):3024-3052. PubMed ID: 26900428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy.
    Wei H; Xu H
    Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates.
    Matricardi C; Hanske C; Garcia-Pomar JL; Langer J; Mihi A; Liz-Marzán LM
    ACS Nano; 2018 Aug; 12(8):8531-8539. PubMed ID: 30106555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical investigation of plasmon sensitivity and surface-enhanced Raman scattering enhancement of individual TiN nanosphere multimers.
    Fu T; Chen Y; Du C; Yang W; Zhang R; Sun L; Shi D
    Nanotechnology; 2020 Mar; 31(13):135210. PubMed ID: 31835258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation on the second part of the electromagnetic SERS enhancement and resulting fabrication strategies of anisotropic plasmonic arrays.
    Cialla D; Petschulat J; Hübner U; Schneidewind H; Zeisberger M; Mattheis R; Pertsch T; Schmitt M; Möller R; Popp J
    Chemphyschem; 2010 Jun; 11(9):1918-24. PubMed ID: 20401896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Optomechanics Approach to Surface-Enhanced Raman Scattering.
    Esteban R; Baumberg JJ; Aizpurua J
    Acc Chem Res; 2022 Jul; 55(14):1889-1899. PubMed ID: 35776555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectric nanosheet modified plasmonic-paper as highly sensitive and stable SERS substrate and its application for pesticides detection.
    Mekonnen ML; Chen CH; Osada M; Su WN; Hwang BJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 225():117484. PubMed ID: 31521003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated Molecular Optomechanics with Hybrid Dielectric-Metallic Resonators.
    Shlesinger I; Cognée KG; Verhagen E; Koenderink AF
    ACS Photonics; 2021 Dec; 8(12):3506-3516. PubMed ID: 34938824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromagnetic theories of surface-enhanced Raman spectroscopy.
    Ding SY; You EM; Tian ZQ; Moskovits M
    Chem Soc Rev; 2017 Jul; 46(13):4042-4076. PubMed ID: 28660954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lab-on-fiber: plasmonic nano-arrays for sensing.
    Wang Q; Wang L
    Nanoscale; 2020 Apr; 12(14):7485-7499. PubMed ID: 32227054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.