These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
359 related articles for article (PubMed ID: 30598072)
1. Computational prediction of plasma protein binding of cyclic peptides from small molecule experimental data using sparse modeling techniques. Tajimi T; Wakui N; Yanagisawa K; Yoshikawa Y; Ohue M; Akiyama Y BMC Bioinformatics; 2018 Dec; 19(Suppl 19):527. PubMed ID: 30598072 [TBL] [Abstract][Full Text] [Related]
2. Plasma protein binding prediction focusing on residue-level features and circularity of cyclic peptides by deep learning. Li J; Yanagisawa K; Yoshikawa Y; Ohue M; Akiyama Y Bioinformatics; 2022 Jan; 38(4):1110-1117. PubMed ID: 34849593 [TBL] [Abstract][Full Text] [Related]
3. In Silico Prediction of Compounds Binding to Human Plasma Proteins by QSAR Models. Sun L; Yang H; Li J; Wang T; Li W; Liu G; Tang Y ChemMedChem; 2018 Mar; 13(6):572-581. PubMed ID: 29057587 [TBL] [Abstract][Full Text] [Related]
4. In vitro, in silico and integrated strategies for the estimation of plasma protein binding. A review. Lambrinidis G; Vallianatou T; Tsantili-Kakoulidou A Adv Drug Deliv Rev; 2015 Jun; 86():27-45. PubMed ID: 25819487 [TBL] [Abstract][Full Text] [Related]
5. Predicting binding affinities of diverse pharmaceutical chemicals to human serum plasma proteins using QSPR modelling approaches. Basant N; Gupta S; Singh KP SAR QSAR Environ Res; 2016; 27(1):67-85. PubMed ID: 26854728 [TBL] [Abstract][Full Text] [Related]
6. Informing the Human Plasma Protein Binding of Environmental Chemicals by Machine Learning in the Pharmaceutical Space: Applicability Domain and Limits of Predictability. Ingle BL; Veber BC; Nichols JW; Tornero-Velez R J Chem Inf Model; 2016 Nov; 56(11):2243-2252. PubMed ID: 27684444 [TBL] [Abstract][Full Text] [Related]
7. Prediction method of pharmacokinetic parameters of small molecule drugs based on GCN network model. Yang Z; Wang Y; Du G; Zhan Y; Zhan W J Mol Model; 2024 Jul; 30(8):264. PubMed ID: 38995407 [TBL] [Abstract][Full Text] [Related]
8. The use of pseudo-equilibrium constant affords improved QSAR models of human plasma protein binding. Zhu XW; Sedykh A; Zhu H; Liu SS; Tropsha A Pharm Res; 2013 Jul; 30(7):1790-8. PubMed ID: 23568522 [TBL] [Abstract][Full Text] [Related]
9. Quantitative Structure - Pharmacokinetics Relationships for Plasma Protein Binding of Basic Drugs. Zhivkova ZD J Pharm Pharm Sci; 2017; 20(1):349-359. PubMed ID: 29145933 [TBL] [Abstract][Full Text] [Related]
10. CycPeptMP: enhancing membrane permeability prediction of cyclic peptides with multi-level molecular features and data augmentation. Li J; Yanagisawa K; Akiyama Y Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39210505 [TBL] [Abstract][Full Text] [Related]
11. The current limits in virtual screening and property prediction. Hutter MC Future Med Chem; 2018 Jul; 10(13):1623-1635. PubMed ID: 29953247 [TBL] [Abstract][Full Text] [Related]
12. Elucidating Compound Mechanism of Action and Predicting Cytotoxicity Using Machine Learning Approaches, Taking Prediction Confidence into Account. Drakakis G; Cortés-Ciriano I; Alexander-Dann B; Bender A Curr Protoc Chem Biol; 2019 Sep; 11(3):e73. PubMed ID: 31483099 [TBL] [Abstract][Full Text] [Related]
13. QSAR modeling of human serum protein binding with several modeling techniques utilizing structure-information representation. Votano JR; Parham M; Hall LM; Hall LH; Kier LB; Oloff S; Tropsha A J Med Chem; 2006 Nov; 49(24):7169-81. PubMed ID: 17125269 [TBL] [Abstract][Full Text] [Related]
14. Promises of Machine Learning Approaches in Prediction of Absorption of Compounds. Kumar R; Sharma A; Siddiqui MH; Tiwari RK Mini Rev Med Chem; 2018; 18(3):196-207. PubMed ID: 28302041 [TBL] [Abstract][Full Text] [Related]
15. Predicting Fraction Unbound in Human Plasma from Chemical Structure: Improved Accuracy in the Low Value Ranges. Watanabe R; Esaki T; Kawashima H; Natsume-Kitatani Y; Nagao C; Ohashi R; Mizuguchi K Mol Pharm; 2018 Nov; 15(11):5302-5311. PubMed ID: 30259749 [TBL] [Abstract][Full Text] [Related]
16. Bayesian molecular design with a chemical language model. Ikebata H; Hongo K; Isomura T; Maezono R; Yoshida R J Comput Aided Mol Des; 2017 Apr; 31(4):379-391. PubMed ID: 28281211 [TBL] [Abstract][Full Text] [Related]
17. GeneralizedDTA: combining pre-training and multi-task learning to predict drug-target binding affinity for unknown drug discovery. Lin S; Shi C; Chen J BMC Bioinformatics; 2022 Sep; 23(1):367. PubMed ID: 36071406 [TBL] [Abstract][Full Text] [Related]
18. Linear and Kernel Model Construction Methods for Predicting Drug-Target Interactions in a Chemogenomic Framework. Yamanishi Y Methods Mol Biol; 2018; 1825():355-368. PubMed ID: 30334213 [TBL] [Abstract][Full Text] [Related]
19. Accurate prediction of HIV-1 drug response from the reverse transcriptase and protease amino acid sequences using sparse models created by convex optimization. Rabinowitz M; Myers L; Banjevic M; Chan A; Sweetkind-Singer J; Haberer J; McCann K; Wolkowicz R Bioinformatics; 2006 Mar; 22(5):541-9. PubMed ID: 16368772 [TBL] [Abstract][Full Text] [Related]