These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

695 related articles for article (PubMed ID: 30598100)

  • 1. Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data.
    Zhang L; Xue G; Liu J; Li Q; Wang Y
    BMC Genomics; 2018 Dec; 19(Suppl 10):914. PubMed ID: 30598100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond.
    Mundade R; Ozer HG; Wei H; Prabhu L; Lu T
    Cell Cycle; 2014; 13(18):2847-52. PubMed ID: 25486472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between histone modifications and transcription factor binding is protein family specific.
    Xin B; Rohs R
    Genome Res; 2018 Mar; 28(3):321-333. PubMed ID: 29326300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative binding of transcription factors in the human genome.
    Nie Y; Shu C; Sun X
    Genomics; 2020 Sep; 112(5):3427-3434. PubMed ID: 32574834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 7C: Computational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs.
    Ibn-Salem J; Andrade-Navarro MA
    BMC Genomics; 2019 Oct; 20(1):777. PubMed ID: 31653198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive modelling of gene expression from transcriptional regulatory elements.
    Budden DM; Hurley DG; Crampin EJ
    Brief Bioinform; 2015 Jul; 16(4):616-28. PubMed ID: 25231769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling co-occupancy of transcription factors using chromatin features.
    Liu L; Zhao W; Zhou X
    Nucleic Acids Res; 2016 Mar; 44(5):e49. PubMed ID: 26590261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features.
    Kumar S; Bucher P
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting expression: the complementary power of histone modification and transcription factor binding data.
    Budden DM; Hurley DG; Cursons J; Markham JF; Davis MJ; Crampin EJ
    Epigenetics Chromatin; 2014; 7(1):36. PubMed ID: 25489339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription factor-binding k-mer analysis clarifies the cell type dependency of binding specificities and cis-regulatory SNPs in humans.
    Tahara S; Tsuchiya T; Matsumoto H; Ozaki H
    BMC Genomics; 2023 Oct; 24(1):597. PubMed ID: 37805453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TICA: Transcriptional Interaction and Coregulation Analyzer.
    Perna S; Pinoli P; Ceri S; Wong L
    Genomics Proteomics Bioinformatics; 2018 Oct; 16(5):342-353. PubMed ID: 30578913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DiNeR: a Differential graphical model for analysis of co-regulation Network Rewiring.
    Zhang J; Liu J; Lee D; Lou S; Chen Z; Gürsoy G; Gerstein M
    BMC Bioinformatics; 2020 Jul; 21(1):281. PubMed ID: 32615918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. hTFtarget: A Comprehensive Database for Regulations of Human Transcription Factors and Their Targets.
    Zhang Q; Liu W; Zhang HM; Xie GY; Miao YR; Xia M; Guo AY
    Genomics Proteomics Bioinformatics; 2020 Apr; 18(2):120-128. PubMed ID: 32858223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.
    Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J
    BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Canonical and single-cell Hi-C reveal distinct chromatin interaction sub-networks of mammalian transcription factors.
    Ma X; Ezer D; Adryan B; Stevens TJ
    Genome Biol; 2018 Oct; 19(1):174. PubMed ID: 30359306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imputation for transcription factor binding predictions based on deep learning.
    Qin Q; Feng J
    PLoS Comput Biol; 2017 Feb; 13(2):e1005403. PubMed ID: 28234893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring condition-specific targets of human TF-TF complexes using ChIP-seq data.
    Yang CC; Chen MH; Lin SY; Andrews EH; Cheng C; Liu CC; Chen JJ
    BMC Genomics; 2017 Jan; 18(1):61. PubMed ID: 28068916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clustering-local-unique-enriched-signals (CLUES) promotes identification of novel regulators of ES cell self-renewal and pluripotency.
    Wu C; Jiao Y; Shen M; Pan C; Cheng G; Jia D; Zhu J; Zhang L; Zheng M; Jia J
    PLoS One; 2018; 13(11):e0206844. PubMed ID: 30399165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational modeling of chromatin accessibility identified important epigenomic regulators.
    Zhao Y; Dong Y; Hong W; Jiang C; Yao K; Cheng C
    BMC Genomics; 2022 Jan; 23(1):19. PubMed ID: 34996354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.