These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30598107)

  • 1. Reveal cell type-specific regulatory elements and their characterized histone code classes via a hidden Markov model.
    Wang C; Zhang S
    BMC Genomics; 2018 Dec; 19(Suppl 10):903. PubMed ID: 30598107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection and characterization of regulatory elements using probabilistic conditional random field and hidden Markov models.
    Wang H; Zhou X
    Chin J Cancer; 2013 Apr; 32(4):186-94. PubMed ID: 23237214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale determination and characterization of cell type-specific regulatory elements in the human genome.
    Wang C; Zhang S
    J Mol Cell Biol; 2017 Dec; 9(6):463-476. PubMed ID: 29281093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding regulatory structures and features from epigenomics profiles: A Roadmap-ENCODE Variational Auto-Encoder (RE-VAE) model.
    Hu R; Pei G; Jia P; Zhao Z
    Methods; 2021 May; 189():44-53. PubMed ID: 31672653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved detection of epigenomic marks with mixed-effects hidden Markov models.
    Baldoni PL; Rashid NU; Ibrahim JG
    Biometrics; 2019 Dec; 75(4):1401-1413. PubMed ID: 31081192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative epigenomic annotation of regulatory DNA.
    Xiao S; Xie D; Cao X; Yu P; Xing X; Chen CC; Musselman M; Xie M; West FD; Lewin HA; Wang T; Zhong S
    Cell; 2012 Jun; 149(6):1381-92. PubMed ID: 22682255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting enhancers in mammalian genomes using supervised hidden Markov models.
    Zehnder T; Benner P; Vingron M
    BMC Bioinformatics; 2019 Mar; 20(1):157. PubMed ID: 30917778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells.
    Karmodiya K; Krebs AR; Oulad-Abdelghani M; Kimura H; Tora L
    BMC Genomics; 2012 Aug; 13():424. PubMed ID: 22920947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The bread wheat epigenomic map reveals distinct chromatin architectural and evolutionary features of functional genetic elements.
    Li Z; Wang M; Lin K; Xie Y; Guo J; Ye L; Zhuang Y; Teng W; Ran X; Tong Y; Xue Y; Zhang W; Zhang Y
    Genome Biol; 2019 Jul; 20(1):139. PubMed ID: 31307500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenomic analysis reveals DNA motifs regulating histone modifications in human and mouse.
    Ngo V; Chen Z; Zhang K; Whitaker JW; Wang M; Wang W
    Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3668-3677. PubMed ID: 30755522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational inference of a genomic pluripotency signature in human and mouse stem cells.
    Kurum E; Benayoun BA; Malhotra A; George J; Ucar D
    Biol Direct; 2016 Sep; 11():47. PubMed ID: 27639379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenetic Modeling of Regulatory Element Turnover Based on Epigenomic Data.
    Dukler N; Huang YF; Siepel A
    Mol Biol Evol; 2020 Jul; 37(7):2137-2152. PubMed ID: 32176292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring chromatin hierarchical organization via Markov State Modelling.
    Tan ZW; Guarnera E; Berezovsky IN
    PLoS Comput Biol; 2018 Dec; 14(12):e1006686. PubMed ID: 30596637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing tissue-specific transcriptional regulatory networks via a Markov random field.
    Ma S; Jiang T; Jiang R
    BMC Genomics; 2018 Dec; 19(Suppl 10):884. PubMed ID: 30598101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NUCLIZE for quantifying epigenome: generating histone modification data at single-nucleosome resolution using genuine nucleosome positions.
    Zheng D; Trynda J; Sun Z; Li Z
    BMC Genomics; 2019 Jul; 20(1):541. PubMed ID: 31266464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity.
    Pancaldi V; Carrillo-de-Santa-Pau E; Javierre BM; Juan D; Fraser P; Spivakov M; Valencia A; Rico D
    Genome Biol; 2016 Jul; 17(1):152. PubMed ID: 27391817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative analysis of 3604 GWAS reveals multiple novel cell type-specific regulatory associations.
    Breeze CE; Haugen E; Reynolds A; Teschendorff A; van Dongen J; Lan Q; Rothman N; Bourque G; Dunham I; Beck S; Stamatoyannopoulos J; Franceschini N; Berndt SI
    Genome Biol; 2022 Jan; 23(1):13. PubMed ID: 34996498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-ChIP enables genome-wide mapping of histone mark co-occurrence at single-molecule resolution.
    Weiner A; Lara-Astiaso D; Krupalnik V; Gafni O; David E; Winter DR; Hanna JH; Amit I
    Nat Biotechnol; 2016 Sep; 34(9):953-61. PubMed ID: 27454738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deciphering epigenomic code for cell differentiation using deep learning.
    Ni P; Su Z
    BMC Genomics; 2019 Sep; 20(1):709. PubMed ID: 31510916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quartet-based inference of cell differentiation trees from ChIP-Seq histone modification data.
    Moumi NA; Das B; Tasnim Promi Z; Bristy NA; Bayzid MS
    PLoS One; 2019; 14(9):e0221270. PubMed ID: 31557185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.