These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 30598115)
1. Identification of cancer subtypes from single-cell RNA-seq data using a consensus clustering method. Gan Y; Li N; Zou G; Xin Y; Guan J BMC Med Genomics; 2018 Dec; 11(Suppl 6):117. PubMed ID: 30598115 [TBL] [Abstract][Full Text] [Related]
2. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis. Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278 [TBL] [Abstract][Full Text] [Related]
3. Subtype identification from heterogeneous TCGA datasets on a genomic scale by multi-view clustering with enhanced consensus. Cai M; Li L BMC Med Genomics; 2017 Dec; 10(Suppl 4):75. PubMed ID: 29322925 [TBL] [Abstract][Full Text] [Related]
4. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa. Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593 [TBL] [Abstract][Full Text] [Related]
5. Cluster analysis on high dimensional RNA-seq data with applications to cancer research - An evaluation study. Vidman L; Källberg D; Rydén P PLoS One; 2019; 14(12):e0219102. PubMed ID: 31805048 [TBL] [Abstract][Full Text] [Related]
6. scEFSC: Accurate single-cell RNA-seq data analysis via ensemble consensus clustering based on multiple feature selections. Bian C; Wang X; Su Y; Wang Y; Wong KC; Li X Comput Struct Biotechnol J; 2022; 20():2181-2197. PubMed ID: 35615016 [TBL] [Abstract][Full Text] [Related]
7. AAFL: automatic association feature learning for gene signature identification of cancer subtypes in single-cell RNA-seq data. Huang M; Long C; Ma J Brief Funct Genomics; 2023 Nov; 22(5):420-427. PubMed ID: 37122141 [TBL] [Abstract][Full Text] [Related]
8. SAME-clustering: Single-cell Aggregated Clustering via Mixture Model Ensemble. Huh R; Yang Y; Jiang Y; Shen Y; Li Y Nucleic Acids Res; 2020 Jan; 48(1):86-95. PubMed ID: 31777938 [TBL] [Abstract][Full Text] [Related]
9. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data. Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142 [TBL] [Abstract][Full Text] [Related]
10. Single-cell RNA-seq dissects the intratumoral heterogeneity of triple-negative breast cancer based on gene regulatory networks. Zhou S; Huang YE; Liu H; Zhou X; Yuan M; Hou F; Wang L; Jiang W Mol Ther Nucleic Acids; 2021 Mar; 23():682-690. PubMed ID: 33575114 [TBL] [Abstract][Full Text] [Related]
11. Impact of similarity metrics on single-cell RNA-seq data clustering. Kim T; Chen IR; Lin Y; Wang AY; Yang JYH; Yang P Brief Bioinform; 2019 Nov; 20(6):2316-2326. PubMed ID: 30137247 [TBL] [Abstract][Full Text] [Related]
12. Detecting Interactive Gene Groups for Single-Cell RNA-Seq Data Based on Co-Expression Network Analysis and Subgraph Learning. Ye X; Zhang W; Futamura Y; Sakurai T Cells; 2020 Aug; 9(9):. PubMed ID: 32825786 [TBL] [Abstract][Full Text] [Related]
13. scLM: Automatic Detection of Consensus Gene Clusters Across Multiple Single-cell Datasets. Song Q; Su J; Miller LD; Zhang W Genomics Proteomics Bioinformatics; 2021 Apr; 19(2):330-341. PubMed ID: 33359676 [TBL] [Abstract][Full Text] [Related]
14. Polled Digital Cell Sorter (p-DCS): Automatic identification of hematological cell types from single cell RNA-sequencing clusters. Domanskyi S; Szedlak A; Hawkins NT; Wang J; Paternostro G; Piermarocchi C BMC Bioinformatics; 2019 Jul; 20(1):369. PubMed ID: 31262249 [TBL] [Abstract][Full Text] [Related]
15. Single cell RNA-seq data clustering using TF-IDF based methods. Moussa M; Măndoiu II BMC Genomics; 2018 Aug; 19(Suppl 6):569. PubMed ID: 30367575 [TBL] [Abstract][Full Text] [Related]
16. Data Analysis in Single-Cell Transcriptome Sequencing. Gao S Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451 [TBL] [Abstract][Full Text] [Related]
17. Detection of high variability in gene expression from single-cell RNA-seq profiling. Chen HI; Jin Y; Huang Y; Chen Y BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924 [TBL] [Abstract][Full Text] [Related]
18. Spectral clustering using Nyström approximation for the accurate identification of cancer molecular subtypes. Shi M; Xu G Sci Rep; 2017 Jul; 7(1):4896. PubMed ID: 28687729 [TBL] [Abstract][Full Text] [Related]
19. A network-assisted co-clustering algorithm to discover cancer subtypes based on gene expression. Liu Y; Gu Q; Hou JP; Han J; Ma J BMC Bioinformatics; 2014 Feb; 15():37. PubMed ID: 24491042 [TBL] [Abstract][Full Text] [Related]
20. Dual-Stream Subspace Clustering Network for revealing gene targets in Alzheimer's disease. Chen M; Jia S; Xue M; Huang H; Xu Z; Yang D; Zhu W; Song Q Comput Biol Med; 2022 Dec; 151(Pt A):106305. PubMed ID: 36401971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]