These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30598524)

  • 1. Self-healing of electrical damage in polymers using superparamagnetic nanoparticles.
    Yang Y; He J; Li Q; Gao L; Hu J; Zeng R; Qin J; Wang SX; Wang Q
    Nat Nanotechnol; 2019 Feb; 14(2):151-155. PubMed ID: 30598524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-healing of electrical damage in insulating robust epoxy containing dynamic fluorine-substituted carbamate bonds for green dielectrics.
    Sun W; Xu J; Song J; Chen Y; Lv Z; Cheng Y; Zhang L
    Mater Horiz; 2023 Jul; 10(7):2542-2553. PubMed ID: 37070696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Healing of Electrical Damage in Polymers.
    Yang Y; Dang ZM; Li Q; He J
    Adv Sci (Weinh); 2020 Nov; 7(21):2002131. PubMed ID: 33173739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microcapsule-Based Autonomous Self-Healing of Electrical Damage in Dielectric Polymers Induced by
    Xie J; Han L; Luo Z; Li Q; He J
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):11185-11192. PubMed ID: 36797048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Repetitive Square Voltage Duty Cycle on the Electrical Tree Characteristics of Epoxy Resin.
    Wang P; Hui S; Akram S; Zhou K; Nazir MT; Chen Y; Dong H; Javed MS; Ul Haq I
    Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 32992505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of sPP Content on Electrical Tree Growth Characteristics in PP-Blended Cable Insulation.
    Zhou S; Yu F; Yang W; Li Z; Xing Z; Fan M; Han T; Du B
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33255955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Self-Fluorescence 3D Imaging of Micro/Nano Damage in Silicone Gel for Understanding Insulation Failure under High-Frequency Electric Fields.
    Tang X; Sima W; Sun P; Zun C; Yuan T; Yang M; Shi Z; Yang H; Deng Q
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):55082-55094. PubMed ID: 37936415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defect-targeted self-healing of multiscale damage in polymers.
    Yang Y; Gao L; Xie J; Zhou Y; Hu J; Li Q; He J
    Nanoscale; 2020 Feb; 12(6):3605-3613. PubMed ID: 31844869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible high-temperature dielectric materials from polymer nanocomposites.
    Li Q; Chen L; Gadinski MR; Zhang S; Zhang G; Li U; Iagodkine E; Haque A; Chen LQ; Jackson N; Wang Q
    Nature; 2015 Jul; 523(7562):576-9. PubMed ID: 26223625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel UV, moisture and magnetic field triple-response smart insulating material achieving highly targeted self-healing based on nano-functionalized microcapsules.
    Sun P; Liu F; Sima W; Yuan T; Yang M; Liang C; Zhao M; Yin Z
    Nanoscale; 2022 Feb; 14(6):2199-2209. PubMed ID: 34929023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding Trap Effects on Electrical Treeing Phenomena in EPDM/POSS Composites.
    Du B; Su J; Tian M; Han T; Li J
    Sci Rep; 2018 May; 8(1):8481. PubMed ID: 29855519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Acetylated SEBS/PP for Potential HVAC Cable Insulation.
    Zhang P; Wang X; Yang J; Zhang Y
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33916884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Voltage Insulation Organic-Inorganic Nanocomposites by Plasma Polymerization.
    Yan W; Han ZJ; Phung BT; Faupel F; Ostrikov K
    Materials (Basel); 2014 Jan; 7(1):563-575. PubMed ID: 28788475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyethylene Nanocomposites for Power Cable Insulations.
    Pleşa I; Noţingher PV; Stancu C; Wiesbrock F; Schlögl S
    Polymers (Basel); 2018 Dec; 11(1):. PubMed ID: 30960008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Smart Insulating Materials Achieving Targeting Self-Healing of Electrical Trees: High Performance, Low Cost, and Eco-Friendliness.
    Sima W; Liang C; Sun P; Yang M; Zhu C; Yuan T; Liu F; Zhao M; Shao Q; Yin Z; Deng Q
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33485-33495. PubMed ID: 34232014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Cross-Linked Polyethylene Networks with High Energy Storage and Electrical Damage Self-Healability.
    Li Z; Wen Y; Song Z; Zhang C; Cui C; An D; Ge Z; Cheng Y; Zhang Q; Zhang Y
    ACS Macro Lett; 2023 Oct; 12(10):1409-1415. PubMed ID: 37792461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aging phenomena in non-crosslinked polyolefin blend cable insulation material: Electrical treeing and thermal aging.
    Lunzhi L; Jinghui G; Lisheng Z; Kai Z; Xiaohan Z
    Front Chem; 2022; 10():903986. PubMed ID: 36426100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Review of Polyolefin-Insulation Materials in High Voltage Transmission; From Electronic Structures to Final Products.
    Bjurström A; Edin H; Hillborg H; Nilsson F; Olsson RT; Pierre M; Unge M; Hedenqvist MS
    Adv Mater; 2024 Jun; ():e2401464. PubMed ID: 38870339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research Progress of Polymers/Inorganic Nanocomposite Electrical Insulating Materials.
    Yu G; Cheng Y; Duan Z
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36431967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locating Method for Electrical Tree Degradation in XLPE Cable Insulation Based on Broadband Impedance Spectrum.
    Han T; Yao Y; Li Q; Huang Y; Zheng Z; Gao Y
    Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36145930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.