BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 30598553)

  • 1. Transcription-dependent regulation of replication dynamics modulates genome stability.
    Blin M; Le Tallec B; Nähse V; Schmidt M; Brossas C; Millot GA; Prioleau MN; Debatisse M
    Nat Struct Mol Biol; 2019 Jan; 26(1):58-66. PubMed ID: 30598553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription-mediated organization of the replication initiation program across large genes sets common fragile sites genome-wide.
    Brison O; El-Hilali S; Azar D; Koundrioukoff S; Schmidt M; Nähse V; Jaszczyszyn Y; Lachages AM; Dutrillaux B; Thermes C; Debatisse M; Chen CL
    Nat Commun; 2019 Dec; 10(1):5693. PubMed ID: 31836700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription-replication conflicts as a source of common fragile site instability caused by BMI1-RNF2 deficiency.
    Sanchez A; de Vivo A; Tonzi P; Kim J; Huang TT; Kee Y
    PLoS Genet; 2020 Mar; 16(3):e1008524. PubMed ID: 32142505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome instability at common fragile sites: searching for the cause of their instability.
    Franchitto A
    Biomed Res Int; 2013; 2013():730714. PubMed ID: 24083238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes.
    Helmrich A; Ballarino M; Tora L
    Mol Cell; 2011 Dec; 44(6):966-77. PubMed ID: 22195969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site.
    Letessier A; Millot GA; Koundrioukoff S; Lachagès AM; Vogt N; Hansen RS; Malfoy B; Brison O; Debatisse M
    Nature; 2011 Feb; 470(7332):120-3. PubMed ID: 21258320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translesion polymerase eta both facilitates DNA replication and promotes increased human genetic variation at common fragile sites.
    Twayana S; Bacolla A; Barreto-Galvez A; De-Paula RB; Drosopoulos WC; Kosiyatrakul ST; Bouhassira EE; Tainer JA; Madireddy A; Schildkraut CL
    Proc Natl Acad Sci U S A; 2021 Nov; 118(48):. PubMed ID: 34815340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A journey with common fragile sites: From S phase to telophase.
    Debatisse M; Rosselli F
    Genes Chromosomes Cancer; 2019 May; 58(5):305-316. PubMed ID: 30387289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large transcription units unify copy number variants and common fragile sites arising under replication stress.
    Wilson TE; Arlt MF; Park SH; Rajendran S; Paulsen M; Ljungman M; Glover TW
    Genome Res; 2015 Feb; 25(2):189-200. PubMed ID: 25373142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Common fragile sites: mechanisms of instability revisited.
    Debatisse M; Le Tallec B; Letessier A; Dutrillaux B; Brison O
    Trends Genet; 2012 Jan; 28(1):22-32. PubMed ID: 22094264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution mapping of mitotic DNA synthesis regions and common fragile sites in the human genome through direct sequencing.
    Macheret M; Bhowmick R; Sobkowiak K; Padayachy L; Mailler J; Hickson ID; Halazonetis TD
    Cell Res; 2020 Nov; 30(11):997-1008. PubMed ID: 32561860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D genome organization contributes to genome instability at fragile sites.
    Sarni D; Sasaki T; Irony Tur-Sinai M; Miron K; Rivera-Mulia JC; Magnuson B; Ljungman M; Gilbert DM; Kerem B
    Nat Commun; 2020 Jul; 11(1):3613. PubMed ID: 32680994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription-replication conflicts at chromosomal fragile sites-consequences in M phase and beyond.
    Oestergaard VH; Lisby M
    Chromosoma; 2017 Mar; 126(2):213-222. PubMed ID: 27796495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA replication stress and its impact on chromosome segregation and tumorigenesis.
    Zhang BN; Bueno Venegas A; Hickson ID; Chu WK
    Semin Cancer Biol; 2019 Apr; 55():61-69. PubMed ID: 29692334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA replication stress drives fragile site instability.
    Irony-Tur Sinai M; Kerem B
    Mutat Res; 2018 Mar; 808():56-61. PubMed ID: 29074228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide high-resolution mapping of mitotic DNA synthesis sites and common fragile sites by direct sequencing.
    Ji F; Liao H; Pan S; Ouyang L; Jia F; Fu Z; Zhang F; Geng X; Wang X; Li T; Liu S; Syeda MZ; Chen H; Li W; Chen Z; Shen H; Ying S
    Cell Res; 2020 Nov; 30(11):1009-1023. PubMed ID: 32561861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fragile site instability in Saccharomyces cerevisiae causes loss of heterozygosity by mitotic crossovers and break-induced replication.
    Rosen DM; Younkin EM; Miller SD; Casper AM
    PLoS Genet; 2013; 9(9):e1003817. PubMed ID: 24068975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sites of chromosomal instability in the context of nuclear architecture and function.
    Pentzold C; Kokal M; Pentzold S; Weise A
    Cell Mol Life Sci; 2021 Mar; 78(5):2095-2103. PubMed ID: 33219838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does interference between replication and transcription contribute to genomic instability in cancer cells?
    Tuduri S; Crabbe L; Tourrière H; Coquelle A; Pasero P
    Cell Cycle; 2010 May; 9(10):1886-92. PubMed ID: 20495385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replication stress activates DNA repair synthesis in mitosis.
    Minocherhomji S; Ying S; Bjerregaard VA; Bursomanno S; Aleliunaite A; Wu W; Mankouri HW; Shen H; Liu Y; Hickson ID
    Nature; 2015 Dec; 528(7581):286-90. PubMed ID: 26633632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.