BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 30598553)

  • 21. Insights into common fragile site instability: DNA replication challenges at DNA repeat sequences.
    Irony-Tur Sinai M; Kerem B
    Emerg Top Life Sci; 2023 Dec; 7(3):277-287. PubMed ID: 37876349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitotic DNA synthesis is caused by transcription-replication conflicts in BRCA2-deficient cells.
    Groelly FJ; Dagg RA; Petropoulos M; Rossetti GG; Prasad B; Panagopoulos A; Paulsen T; Karamichali A; Jones SE; Ochs F; Dionellis VS; Puig Lombardi E; Miossec MJ; Lockstone H; Legube G; Blackford AN; Altmeyer M; Halazonetis TD; Tarsounas M
    Mol Cell; 2022 Sep; 82(18):3382-3397.e7. PubMed ID: 36002001
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interplay between genetic and epigenetic factors governs common fragile site instability in cancer.
    Ozeri-Galai E; Tur-Sinai M; Bester AC; Kerem B
    Cell Mol Life Sci; 2014 Dec; 71(23):4495-506. PubMed ID: 25297918
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ERCC1 and MUS81-EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis.
    Naim V; Wilhelm T; Debatisse M; Rosselli F
    Nat Cell Biol; 2013 Aug; 15(8):1008-15. PubMed ID: 23811686
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A blooming resolvase at chromosomal fragile sites.
    Pellicioli A; Muzi-Falconi M
    Nat Cell Biol; 2013 Aug; 15(8):883-5. PubMed ID: 23907189
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcription-mediated replication hindrance: a major driver of genome instability.
    Gómez-González B; Aguilera A
    Genes Dev; 2019 Aug; 33(15-16):1008-1026. PubMed ID: 31123061
    [TBL] [Abstract][Full Text] [Related]  

  • 27. WWOX, large common fragile site genes, and cancer.
    Gao G; Smith DI
    Exp Biol Med (Maywood); 2015 Mar; 240(3):285-95. PubMed ID: 25595185
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Updating the mechanisms of common fragile site instability: how to reconcile the different views?
    Le Tallec B; Koundrioukoff S; Wilhelm T; Letessier A; Brison O; Debatisse M
    Cell Mol Life Sci; 2014 Dec; 71(23):4489-94. PubMed ID: 25248392
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Detection and Analysis of Chromosome Fragile Sites.
    Bjerregaard VA; Özer Ö; Hickson ID; Liu Y
    Methods Mol Biol; 2018; 1672():471-482. PubMed ID: 29043642
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How unfinished business from S-phase affects mitosis and beyond.
    Mankouri HW; Huttner D; Hickson ID
    EMBO J; 2013 Oct; 32(20):2661-71. PubMed ID: 24065128
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Locus-specific transcription silencing at the FHIT gene suppresses replication stress-induced copy number variant formation and associated replication delay.
    Park SH; Bennett-Baker P; Ahmed S; Arlt MF; Ljungman M; Glover TW; Wilson TE
    Nucleic Acids Res; 2021 Jul; 49(13):7507-7524. PubMed ID: 34181717
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rescue from replication stress during mitosis.
    Fragkos M; Naim V
    Cell Cycle; 2017 Apr; 16(7):613-633. PubMed ID: 28166452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genomic instability in fragile sites-still adding the pieces.
    Irony-Tur Sinai M; Kerem B
    Genes Chromosomes Cancer; 2019 May; 58(5):295-304. PubMed ID: 30525255
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Replication stress induces accumulation of FANCD2 at central region of large fragile genes.
    Okamoto Y; Iwasaki WM; Kugou K; Takahashi KK; Oda A; Sato K; Kobayashi W; Kawai H; Sakasai R; Takaori-Kondo A; Yamamoto T; Kanemaki MT; Taoka M; Isobe T; Kurumizaka H; Innan H; Ohta K; Ishiai M; Takata M
    Nucleic Acids Res; 2018 Apr; 46(6):2932-2944. PubMed ID: 29394375
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteomic characterization of chromosomal common fragile site (CFS)-associated proteins uncovers ATRX as a regulator of CFS stability.
    Pladevall-Morera D; Munk S; Ingham A; Garribba L; Albers E; Liu Y; Olsen JV; Lopez-Contreras AJ
    Nucleic Acids Res; 2019 Sep; 47(15):8004-8018. PubMed ID: 31180492
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controlled rereplication at DNA replication origins.
    Gómez M
    Cell Cycle; 2008 May; 7(10):1313-4. PubMed ID: 18418064
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The causes of replication stress and their consequences on genome stability and cell fate.
    Magdalou I; Lopez BS; Pasero P; Lambert SA
    Semin Cell Dev Biol; 2014 Jun; 30():154-64. PubMed ID: 24818779
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oncogenes create a unique landscape of fragile sites.
    Miron K; Golan-Lev T; Dvir R; Ben-David E; Kerem B
    Nat Commun; 2015 May; 6():7094. PubMed ID: 25959793
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pathways for maintenance of telomeres and common fragile sites during DNA replication stress.
    Özer Ö; Hickson ID
    Open Biol; 2018 Apr; 8(4):. PubMed ID: 29695617
    [TBL] [Abstract][Full Text] [Related]  

  • 40. AT-dinucleotide rich sequences drive fragile site formation.
    Irony-Tur Sinai M; Salamon A; Stanleigh N; Goldberg T; Weiss A; Wang YH; Kerem B
    Nucleic Acids Res; 2019 Oct; 47(18):9685-9695. PubMed ID: 31410468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.