These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30598854)

  • 21. Design and Validation of a Lightweight Hip Exoskeleton Driven by Series Elastic Actuator With Two-Motor Variable Speed Transmission.
    Zhang T; Ning C; Li Y; Wang M
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2456-2466. PubMed ID: 36001514
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlling Knee Swing Initiation and Ankle Plantarflexion With an Active Prosthesis on Level and Inclined Surfaces at Variable Walking Speeds.
    Fey NP; Simon AM; Young AJ; Hargrove LJ
    IEEE J Transl Eng Health Med; 2014; 2():2100412. PubMed ID: 27170878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ankle-Knee prosthesis with powered ankle and energy transfer for CYBERLEGs α-prototype.
    Geeroms J; Flynn L; Jimenez-Fabian R; Vanderborght B; Lefeber D
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650352. PubMed ID: 24187171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A powered prosthetic ankle joint for walking and running.
    Grimmer M; Holgate M; Holgate R; Boehler A; Ward J; Hollander K; Sugar T; Seyfarth A
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):141. PubMed ID: 28105953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Active joint mechanism driven by multiple actuators made of flexible bags: a proposal of dual structural actuator.
    Kimura H; Matsuzaki T; Kataoka M; Inou N
    ScientificWorldJournal; 2013; 2013():128916. PubMed ID: 24385868
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis.
    Moltedo M; Bacek T; Langlois K; Junius K; Vanderborght B; Lefeber D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():283-288. PubMed ID: 28813832
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tunable, Textile-Based Joint Impedance Module for Soft Robotic Applications.
    O'Neill CT; Young HT; Hohimer CJ; Proietti T; Rastgaar M; Artemiadis P; Walsh CJ
    Soft Robot; 2023 Oct; 10(5):937-947. PubMed ID: 37042697
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and Control of an Active Electrical Knee and Ankle Prosthesis.
    Sup F; Varol HA; Mitchell J; Withrow T; Goldfarb M
    Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron; 2008 Oct; 2008():523-528. PubMed ID: 20648239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. User-modulated impedance control of a prosthetic elbow in unconstrained, perturbed motion.
    Sensinger JW; ff Weir RF
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1043-55. PubMed ID: 18334396
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Agonist-antagonist active knee prosthesis: a preliminary study in level-ground walking.
    Martinez-Villalpando EC; Herr H
    J Rehabil Res Dev; 2009; 46(3):361-73. PubMed ID: 19675988
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Clutchable series-elastic actuator: design of a robotic knee prosthesis for minimum energy consumption.
    Rouse EJ; Mooney LM; Martinez-Villalpando EC; Herr HM
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650383. PubMed ID: 24187202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and Control of a Pneumatically Actuated Transtibial Prosthesis.
    Zheng H; Shen X
    J Bionic Eng; 2015 Apr; 12(2):217-226. PubMed ID: 26146497
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel compliant actuator for wearable robotics applications.
    Claros M; Soto R; Rodríguez JJ; Cantú C; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2854-7. PubMed ID: 24110322
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Active lower limb prosthetics: a systematic review of design issues and solutions.
    Windrich M; Grimmer M; Christ O; Rinderknecht S; Beckerle P
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):140. PubMed ID: 28105948
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-Contained Powered Knee and Ankle Prosthesis: Initial Evaluation on a Transfemoral Amputee.
    Sup F; Varol HA; Mitchell J; Withrow TJ; Goldfarb M
    IEEE Int Conf Rehabil Robot; 2009 Jun; 2009():638-644. PubMed ID: 20228944
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A two-degree-of-freedom motor-powered gait orthosis for spinal cord injury patients.
    Ohta Y; Yano H; Suzuki R; Yoshida M; Kawashima N; Nakazawa K
    Proc Inst Mech Eng H; 2007 Aug; 221(6):629-39. PubMed ID: 17937202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Prototype of a Neural, Powered, Transtibial Prosthesis for the Cat: Benchtop Characterization.
    Park H; Islam MS; Grover MA; Klishko AN; Prilutsky BI; DeWeerth SP
    Front Neurosci; 2018; 12():471. PubMed ID: 30057524
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling and Control of a Cable-Driven Rotary Series Elastic Actuator for an Upper Limb Rehabilitation Robot.
    Zhang Q; Sun D; Qian W; Xiao X; Guo Z
    Front Neurorobot; 2020; 14():13. PubMed ID: 32161531
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reducing Metabolic Cost During Planetary Ambulation Using Robotic Actuation.
    Kluis L; Keller N; Bai H; Iyengar N; Shepherd R; Diaz-Artiles A
    Aerosp Med Hum Perform; 2021 Jul; 92(7):570-578. PubMed ID: 34503631
    [No Abstract]   [Full Text] [Related]  

  • 40. The Challenges and Achievements of Experimental Implementation of an Active Transfemoral Prosthesis Based on Biological Quasi-Stiffness: The CYBERLEGs Beta-Prosthesis.
    Flynn L; Geeroms J; Jimenez-Fabian R; Heins S; Vanderborght B; Munih M; Molino Lova R; Vitiello N; Lefeber D
    Front Neurorobot; 2018; 12():80. PubMed ID: 30564111
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.