BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30599355)

  • 1. Kriging methods with auxiliary nighttime lights data to detect potentially toxic metals concentrations in soil.
    Zhen J; Pei T; Xie S
    Sci Total Environ; 2019 Apr; 659():363-371. PubMed ID: 30599355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Prediction of Spatial Distribution of Heavy Metals in Cultivated Soil Based on Multi-source Auxiliary Variables and Random Forest Model].
    Xie XF; Guo WW; Pu LJ; Miu YQ; Jiang GJ; Zhang JZ; Xu F; Wu T
    Huan Jing Ke Xue; 2024 Jan; 45(1):386-395. PubMed ID: 38216488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and mapping of cadmium in soils based on qualitative and quantitative auxiliary variables in a cadmium contaminated area.
    Cao S; Lu A; Wang J; Huo L
    Sci Total Environ; 2017 Feb; 580():430-439. PubMed ID: 28040209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Kriging prediction of soil zinc in contaminated field by using an auxiliary variable].
    Jiang Y; Li Q; Zhang X; Liang W
    Ying Yong Sheng Tai Xue Bao; 2006 Jan; 17(1):97-101. PubMed ID: 16689242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Spatial interpolation of soil organic matter using regression Kriging and geographically weighted regression Kriging].
    Yang SH; Zhang HT; Guo L; Ren Y
    Ying Yong Sheng Tai Xue Bao; 2015 Jun; 26(6):1649-56. PubMed ID: 26572015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the concentration of antimony in agricultural soil using data fusion, terrain attributes combined with regression kriging.
    Agyeman PC; Kingsley J; Kebonye NM; Khosravi V; Borůvka L; Vašát R
    Environ Pollut; 2023 Jan; 316(Pt 1):120697. PubMed ID: 36403872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Spatial interpolation model of soil organic carbon density considering land-use and spatial heterogeneity.].
    Wu ZH; Liu YF; Chen YY; Guo L; Jiang QH; Wang SC
    Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):238-246. PubMed ID: 29692033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping geogenic radon potential by regression kriging.
    Pásztor L; Szabó KZ; Szatmári G; Laborczi A; Horváth Á
    Sci Total Environ; 2016 Feb; 544():883-91. PubMed ID: 26706761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ancillary information improves kriging on soil organic carbon data for a typical karst peak cluster depression landscape.
    Zhang W; Wang K; Chen H; He X; Zhang J
    J Sci Food Agric; 2012 Mar; 92(5):1094-102. PubMed ID: 22297926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Extended Kriging Method to Interpolate Near-Surface Soil Moisture Data Measured by Wireless Sensor Networks.
    Zhang J; Li X; Yang R; Liu Q; Zhao L; Dou B
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28617351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Improved Regression Kriging Prediction of the Spatial Distribution of the Soil Cadmium by Integrating Natural and Human Factors].
    Gao ZY; Xiao RB; Wang P; Deng YR; Dai WJ; Liu CF
    Huan Jing Ke Xue; 2021 Jan; 42(1):343-352. PubMed ID: 33372486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing ordinary kriging and inverse distance weighting for soil as pollution in Beijing.
    Qiao P; Lei M; Yang S; Yang J; Guo G; Zhou X
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15597-15608. PubMed ID: 29572743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial distribution prediction of soil As in a large-scale arsenic slag contaminated site based on an integrated model and multi-source environmental data.
    Liu G; Zhou X; Li Q; Shi Y; Guo G; Zhao L; Wang J; Su Y; Zhang C
    Environ Pollut; 2020 Dec; 267():115631. PubMed ID: 33254608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data.
    Hu J; Zhou J; Zhou G; Luo Y; Xu X; Li P; Liang J
    PLoS One; 2016; 11(1):e0146589. PubMed ID: 26807579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Spatial pattern of soil fertility in Bashan tea garden: a prediction based on environmental auxiliary variables].
    Qin LF; Yang C; Lin FF; Yang N; Zheng XY; Xu HW; Wang K
    Ying Yong Sheng Tai Xue Bao; 2010 Dec; 21(12):3099-104. PubMed ID: 21442995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disaggregation of legacy soil data using area to point kriging for mapping soil organic carbon at the regional scale.
    Kerry R; Goovaerts P; Rawlins BG; Marchant BP
    Geoderma; 2012 Jan; 170():347-358. PubMed ID: 25729090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing spatial estimates of metal pollutants in raw wastewater irrigated fields using a topsoil organic carbon map predicted from aerial photography.
    Bourennane H; Dère Ch; Lamy I; Cornu S; Baize D; van Oort F; King D
    Sci Total Environ; 2006 May; 361(1-3):229-48. PubMed ID: 15993472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Spatial Variations in Soil Nutrients with Hyperspectral Remote Sensing at Regional Scale.
    Song YQ; Zhao X; Su HY; Li B; Hu YM; Cui XS
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30217092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping Copper and Lead Concentrations at Abandoned Mine Areas Using Element Analysis Data from ICP-AES and Portable XRF Instruments: A Comparative Study.
    Lee H; Choi Y; Suh J; Lee SH
    Int J Environ Res Public Health; 2016 Mar; 13(4):384. PubMed ID: 27043594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital Mapping of Soil Organic Carbon Based on Machine Learning and Regression Kriging.
    Zhu C; Wei Y; Zhu F; Lu W; Fang Z; Li Z; Pan J
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.