BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30599427)

  • 1. Phase-locking of irregular guinea pig primary vestibular afferents to high frequency (>250 Hz) sound and vibration.
    Curthoys IS; Burgess AM; Goonetilleke SC
    Hear Res; 2019 Mar; 373():59-70. PubMed ID: 30599427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig.
    Curthoys IS; Kim J; McPhedran SK; Camp AJ
    Exp Brain Res; 2006 Nov; 175(2):256-67. PubMed ID: 16761136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The response of guinea pig primary utricular and saccular irregular neurons to bone-conducted vibration (BCV) and air-conducted sound (ACS).
    Curthoys IS; Vulovic V; Burgess AM; Sokolic L; Goonetilleke SC
    Hear Res; 2016 Jan; 331():131-43. PubMed ID: 26626360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Input-output functions of vestibular afferent responses to air-conducted clicks in rats.
    Zhu H; Tang X; Wei W; Maklad A; Mustain W; Rabbitt R; Highstein S; Allison J; Zhou W
    J Assoc Res Otolaryngol; 2014 Feb; 15(1):73-86. PubMed ID: 24297262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of mechanical and synaptic processes in otolith transduction of sound and vibration for clinical VEMP testing.
    Curthoys IS; Grant JW; Pastras CJ; Brown DJ; Burgess AM; Brichta AM; Lim R
    J Neurophysiol; 2019 Jul; 122(1):259-276. PubMed ID: 31042414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural basis of new clinical vestibular tests: otolithic neural responses to sound and vibration.
    Curthoys IS; Vulovic V; Burgess AM; Manzari L; Sokolic L; Pogson J; Robins M; Mezey LE; Goonetilleke S; Cornell ED; MacDougall HG
    Clin Exp Pharmacol Physiol; 2014 May; 41(5):371-80. PubMed ID: 24754528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Otolithic Receptor Mechanisms for Vestibular-Evoked Myogenic Potentials: A Review.
    Curthoys IS; Grant JW; Burgess AM; Pastras CJ; Brown DJ; Manzari L
    Front Neurol; 2018; 9():366. PubMed ID: 29887827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of Guinea Pig Irregular Semicircular Canal Afferents by 100 Hz Vibration: Clinical Implications for Vibration-induced Nystagmus and Vestibular-evoked Myogenic Potentials.
    Dlugaiczyk J; Burgess AM; Curthoys IS
    Otol Neurotol; 2020 Aug; 41(7):e961-e970. PubMed ID: 32658114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The new vestibular stimuli: sound and vibration-anatomical, physiological and clinical evidence.
    Curthoys IS
    Exp Brain Res; 2017 Apr; 235(4):957-972. PubMed ID: 28130556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustained and Transient Vestibular Systems: A Physiological Basis for Interpreting Vestibular Function.
    Curthoys IS; MacDougall HG; Vidal PP; de Waele C
    Front Neurol; 2017; 8():117. PubMed ID: 28424655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic responses of vestibular afferents in a model of superior canal dehiscence.
    Carey JP; Hirvonen TP; Hullar TE; Minor LB
    Otol Neurotol; 2004 May; 25(3):345-52. PubMed ID: 15129116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superior Canal Dehiscence Syndrome: Relating Clinical Findings With Vestibular Neural Responses From a Guinea Pig Model.
    Dlugaiczyk J; Burgess AM; Goonetilleke SC; Sokolic L; Curthoys IS
    Otol Neurotol; 2019 Apr; 40(4):e406-e414. PubMed ID: 30870375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vestibular primary afferent responses to sound and vibration in the guinea pig.
    Curthoys IS; Vulovic V
    Exp Brain Res; 2011 May; 210(3-4):347-52. PubMed ID: 21113779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How does high-frequency sound or vibration activate vestibular receptors?
    Curthoys IS; Grant JW
    Exp Brain Res; 2015 Mar; 233(3):691-9. PubMed ID: 25567092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Similarities and Differences Between Vestibular and Cochlear Systems - A Review of Clinical and Physiological Evidence.
    Curthoys IS; Grant JW; Pastras CJ; Fröhlich L; Brown DJ
    Front Neurosci; 2021; 15():695179. PubMed ID: 34456671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Irregular primary otolith afferents from the guinea pig utricular and saccular maculae respond to both bone conducted vibration and to air conducted sound.
    Curthoys IS; Vulovic V; Sokolic L; Pogson J; Burgess AM
    Brain Res Bull; 2012 Oct; 89(1-2):16-21. PubMed ID: 22814095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for the utricular origin of the vestibular short-latency-evoked potential (VsEP) to bone-conducted vibration in guinea pig.
    Chihara Y; Wang V; Brown DJ
    Exp Brain Res; 2013 Aug; 229(2):157-70. PubMed ID: 23780310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The basis for using bone-conducted vibration or air-conducted sound to test otolithic function.
    Curthoys IS; Vulovic V; Burgess AM; Cornell ED; Mezey LE; Macdougall HG; Manzari L; McGarvie LA
    Ann N Y Acad Sci; 2011 Sep; 1233():231-41. PubMed ID: 21950999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Click-evoked responses in vestibular afferents in rats.
    Zhu H; Tang X; Wei W; Mustain W; Xu Y; Zhou W
    J Neurophysiol; 2011 Aug; 106(2):754-63. PubMed ID: 21613592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential Activation of Canal and Otolith Afferents by Acoustic Tone Bursts in Rats.
    Huang J; Tang X; Xu Y; Zhang C; Chen T; Yu Y; Mustain W; Allison J; Iversen MM; Rabbitt RD; Zhou W; Zhu H
    J Assoc Res Otolaryngol; 2022 Jun; 23(3):435-453. PubMed ID: 35378621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.