These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30599427)

  • 21. Responses of primary vestibular neurons to galvanic vestibular stimulation (GVS) in the anaesthetised guinea pig.
    Kim J; Curthoys IS
    Brain Res Bull; 2004 Sep; 64(3):265-71. PubMed ID: 15464864
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo recording of the vestibular microphonic in mammals.
    Pastras CJ; Curthoys IS; Brown DJ
    Hear Res; 2017 Oct; 354():38-47. PubMed ID: 28850921
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of efferent stimulation on acoustically responsive vestibular afferents in the cat.
    McCue MP; Guinan JJ
    J Neurosci; 1994 Oct; 14(10):6071-83. PubMed ID: 7931563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sound-evoked activity in primary afferent neurons of a mammalian vestibular system.
    McCue MP; Guinan JJ
    Am J Otol; 1997 May; 18(3):355-60. PubMed ID: 9149831
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physiology, clinical evidence and diagnostic relevance of sound-induced and vibration-induced vestibular stimulation.
    Curthoys IS; Dlugaiczyk J
    Curr Opin Neurol; 2020 Feb; 33(1):126-135. PubMed ID: 31789675
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Responses of squirrel monkey vestibular neurons to audio-frequency sound and head vibration.
    Young ED; Fernández C; Goldberg JM
    Acta Otolaryngol; 1977; 84(5-6):352-60. PubMed ID: 303426
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of high intensity noise on the vestibular system in rats.
    Stewart C; Yu Y; Huang J; Maklad A; Tang X; Allison J; Mustain W; Zhou W; Zhu H
    Hear Res; 2016 May; 335():118-127. PubMed ID: 26970474
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiological and anatomical study of click-sensitive primary vestibular afferents in the guinea pig.
    Murofushi T; Curthoys IS
    Acta Otolaryngol; 1997 Jan; 117(1):66-72. PubMed ID: 9039484
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence That Ultrafast Nonquantal Transmission Underlies Synchronized Vestibular Action Potential Generation.
    Pastras CJ; Curthoys IS; Asadnia M; McAlpine D; Rabbitt RD; Brown DJ
    J Neurosci; 2023 Oct; 43(43):7149-7157. PubMed ID: 37775302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Patterns of canal and otolith afferent input convergence in frog second-order vestibular neurons.
    Straka H; Holler S; Goto F
    J Neurophysiol; 2002 Nov; 88(5):2287-301. PubMed ID: 12424270
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of temperature on the sound-evoked vestibular potential.
    Wit HP; Dijkgraaf E
    Acta Otolaryngol; 1985; 100(5-6):344-50. PubMed ID: 3878654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A critical review of the neurophysiological evidence underlying clinical vestibular testing using sound, vibration and galvanic stimuli.
    Curthoys IS
    Clin Neurophysiol; 2010 Feb; 121(2):132-44. PubMed ID: 19897412
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon dioxide laser occlusion of the guinea pig posterior semicircular canal.
    Antonelli PJ; Bouchard KR; Kartush JM
    Otolaryngol Head Neck Surg; 1995 Oct; 113(4):453-8. PubMed ID: 7567020
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Afferent diversity and the organization of central vestibular pathways.
    Goldberg JM
    Exp Brain Res; 2000 Feb; 130(3):277-97. PubMed ID: 10706428
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic response to sound and vibration of the guinea pig utricular macula, measured in vivo using Laser Doppler Vibrometry.
    Pastras CJ; Curthoys IS; Brown DJ
    Hear Res; 2018 Dec; 370():232-237. PubMed ID: 30170855
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The increased sensitivity of irregular peripheral canal and otolith vestibular afferents optimizes their encoding of natural stimuli.
    Schneider AD; Jamali M; Carriot J; Chacron MJ; Cullen KE
    J Neurosci; 2015 Apr; 35(14):5522-36. PubMed ID: 25855169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect on cochlear potentials of lateral semicircular canal destruction.
    Kobayashi T; Shiga N; Hozawa K; Hashimoto S; Takasaka T
    Arch Otolaryngol Head Neck Surg; 1991 Nov; 117(11):1292-5. PubMed ID: 1747236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells.
    Palmer AR; Russell IJ
    Hear Res; 1986; 24(1):1-15. PubMed ID: 3759671
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of auditory percepts by transcutaneous electrical stimulation.
    Ueberfuhr MA; Braun A; Wiegrebe L; Grothe B; Drexl M
    Hear Res; 2017 Jul; 350():235-243. PubMed ID: 28323018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vestibular acoustic reception in the guinea pig: a saccular function?
    Cazals Y; Aran JM; Erre JP; Guilhaume A; Aurousseau C
    Acta Otolaryngol; 1983; 95(3-4):211-7. PubMed ID: 6601354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.