These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
516 related articles for article (PubMed ID: 30599430)
1. Dissipation of neonicotinoid insecticides imidacloprid, indoxacarb and thiamethoxam on pomegranate (Punica granatum L.). Mohapatra S; Siddamallaiah L; Matadha NY; Udupi VR; Raj DP; Gadigeppa S Ecotoxicol Environ Saf; 2019 Apr; 171():130-137. PubMed ID: 30599430 [TBL] [Abstract][Full Text] [Related]
2. Residue level and dissipation of carbendazim in/on pomegranate fruits and soil. Mohapatra S; S L Environ Monit Assess; 2016 Jul; 188(7):406. PubMed ID: 27296543 [TBL] [Abstract][Full Text] [Related]
3. Dissipation kinetics and risk assessment of thiamethoxam and dimethoate in mango. Bhattacherjee AK; Dikshit A Environ Monit Assess; 2016 Mar; 188(3):165. PubMed ID: 26879986 [TBL] [Abstract][Full Text] [Related]
4. Persistence, metabolism and safety evaluation of thiamethoxam in tomato crop. Karmakar R; Kulshrestha G Pest Manag Sci; 2009 Aug; 65(8):931-7. PubMed ID: 19459179 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the dissipation behaviour of three neonicotinoid insecticides in tea. Hou RY; Hu JF; Qian XS; Su T; Wang XH; Zhao XX; Wan XC Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2013; 30(10):1761-9. PubMed ID: 23906092 [TBL] [Abstract][Full Text] [Related]
6. Determination of thiamethoxam residues in banana stem and fruit through LC-MS/MS. Suganthi A; Nikita SA; Kousika J; Bhuvaneswari K; Sridharan S Environ Monit Assess; 2018 Apr; 190(5):293. PubMed ID: 29671070 [TBL] [Abstract][Full Text] [Related]
7. Concentration and dissipation of chlorantraniliprole and thiamethoxam residues in maize straw, maize, and soil. He M; Song D; Jia HC; Zheng Y J Environ Sci Health B; 2016 Sep; 51(9):594-601. PubMed ID: 27192406 [TBL] [Abstract][Full Text] [Related]
8. Quantitative analysis of the neonicotinoid insecticides imidacloprid and thiamethoxam in fruit juices by enzyme-linked immunosorbent assays. Xu T; Wei KY; Wang J; Ma HX; Li J; Xu YJ; Li QX J AOAC Int; 2010; 93(1):12-8. PubMed ID: 20334161 [TBL] [Abstract][Full Text] [Related]
9. Dynamic behaviour and residual pattern of thiamethoxam and its metabolite clothianidin in Swiss chard using liquid chromatography-tandem mass spectrometry. Rahman MM; Farha W; Abd El-Aty AM; Kabir MH; Im SJ; Jung DI; Choi JH; Kim SW; Son YW; Kwon CH; Shin HC; Shim JH Food Chem; 2015 May; 174():248-55. PubMed ID: 25529677 [TBL] [Abstract][Full Text] [Related]
10. Residue and dissipation kinetics of thiamethoxam in a vegetable-field ecosystem using QuEChERS methodology combined with HPLC-DAD. Abd-Alrahman SH Food Chem; 2014 Sep; 159():1-4. PubMed ID: 24767019 [TBL] [Abstract][Full Text] [Related]
11. The Dissipative Potential of Gamma Irradiation in Residues of Imidacloprid and Thiamethoxam in the Postharvest of Common Beans. Armelim JM; Mendes KF; Pimpinato RF; Tornisielo VL J Food Sci; 2018 Oct; 83(10):2669-2674. PubMed ID: 30216503 [TBL] [Abstract][Full Text] [Related]
12. Residue evaluation of imidacloprid, spirotetramat, and spirotetramat-enol in/on grapes (Vitis vinifera L.) and soil. Mohapatra S; Kumar S; Prakash GS Environ Monit Assess; 2015 Oct; 187(10):632. PubMed ID: 26383737 [TBL] [Abstract][Full Text] [Related]
13. Dissipation behavior and dietary risk assessment of lambda-cyhalothrin, thiamethoxam and its metabolite clothianidin in apple after open field application. Fan X; Zhao S; Hu J Regul Toxicol Pharmacol; 2019 Feb; 101():135-141. PubMed ID: 30445137 [TBL] [Abstract][Full Text] [Related]
14. Application of enzyme-linked immunosorbent assay for quantification of the insecticides imidacloprid and thiamethoxam in honey samples. Ma H; Xu Y; Li QX; Xu T; Wang X; Li J Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 May; 26(5):713-8. PubMed ID: 19680942 [TBL] [Abstract][Full Text] [Related]
15. Zirconium(Ⅳ)-based metal-organic framework for determination of imidacloprid and thiamethoxam pesticides from fruits by UPLC-MS/MS. Xu Y; Li X; Zhang W; Jiang H; Pu Y; Cao J; Jiang W Food Chem; 2021 May; 344():128650. PubMed ID: 33229159 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous determination of neonicotinoid insecticides in sunflower-treated seeds (hull and kernel) by LC-MS/MS. Sánchez-Hernández L; Higes M; Martín MT; Nozal MJ; Bernal JL Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016; 33(3):442-51. PubMed ID: 26678670 [TBL] [Abstract][Full Text] [Related]
17. Determination of Neonicotinoid Pesticides in Propolis with Liquid Chromatography Coupled to Tandem Mass Spectrometry. Tomšič R; Heath D; Heath E; Markelj J; Kandolf Borovšak A; Prosen H Molecules; 2020 Dec; 25(24):. PubMed ID: 33322588 [TBL] [Abstract][Full Text] [Related]
18. Neonicotinoid concentrations in arable soils after seed treatment applications in preceding years. Jones A; Harrington P; Turnbull G Pest Manag Sci; 2014 Dec; 70(12):1780-4. PubMed ID: 24888990 [TBL] [Abstract][Full Text] [Related]
19. Concentrations of imidacloprid and thiamethoxam in pollen, nectar and leaves from seed-dressed cotton crops and their potential risk to honeybees (Apis mellifera L.). Jiang J; Ma D; Zou N; Yu X; Zhang Z; Liu F; Mu W Chemosphere; 2018 Jun; 201():159-167. PubMed ID: 29524816 [TBL] [Abstract][Full Text] [Related]
20. Application of solid-phase extraction and liquid chromatography-mass spectrometry to the determination of neonicotinoid pesticide residues in fruit and vegetables. Di Muccio A; Fidente P; Barbini DA; Dommarco R; Seccia S; Morrica P J Chromatogr A; 2006 Mar; 1108(1):1-6. PubMed ID: 16448655 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]