These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 30599585)
1. Reactor design and integration with product detection to accelerate screening of electrocatalysts for carbon dioxide reduction. Jones RJR; Wang Y; Lai Y; Shinde A; Gregoire JM Rev Sci Instrum; 2018 Dec; 89(12):124102. PubMed ID: 30599585 [TBL] [Abstract][Full Text] [Related]
2. Scanning Electrochemical Flow Cell with Online Mass Spectroscopy for Accelerated Screening of Carbon Dioxide Reduction Electrocatalysts. Lai Y; Jones RJR; Wang Y; Zhou L; Gregoire JM ACS Comb Sci; 2019 Oct; 21(10):692-704. PubMed ID: 31525292 [TBL] [Abstract][Full Text] [Related]
3. Engineering Catalyst-Electrolyte Microenvironments to Optimize the Activity and Selectivity for the Electrochemical Reduction of CO Bui JC; Kim C; King AJ; Romiluyi O; Kusoglu A; Weber AZ; Bell AT Acc Chem Res; 2022 Feb; 55(4):484-494. PubMed ID: 35104114 [TBL] [Abstract][Full Text] [Related]
4. Developing Catalysts Integrated in Gas-Diffusion Electrodes for CO Haaring R; Kang PW; Guo Z; Lee JW; Lee H Acc Chem Res; 2023 Oct; 56(19):2595-2605. PubMed ID: 37698057 [TBL] [Abstract][Full Text] [Related]
5. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
6. Effects of temperature and gas-liquid mass transfer on the operation of small electrochemical cells for the quantitative evaluation of CO Lobaccaro P; Singh MR; Clark EL; Kwon Y; Bell AT; Ager JW Phys Chem Chem Phys; 2016 Sep; 18(38):26777-26785. PubMed ID: 27722320 [TBL] [Abstract][Full Text] [Related]
7. Direct Observation of the Local Reaction Environment during the Electrochemical Reduction of CO Clark EL; Bell AT J Am Chem Soc; 2018 Jun; 140(22):7012-7020. PubMed ID: 29756446 [TBL] [Abstract][Full Text] [Related]
8. A Highly Porous Copper Electrocatalyst for Carbon Dioxide Reduction. Lv JJ; Jouny M; Luc W; Zhu W; Zhu JJ; Jiao F Adv Mater; 2018 Dec; 30(49):e1803111. PubMed ID: 30368917 [TBL] [Abstract][Full Text] [Related]
9. Advances and Challenges for the Electrochemical Reduction of CO Jin S; Hao Z; Zhang K; Yan Z; Chen J Angew Chem Int Ed Engl; 2021 Sep; 60(38):20627-20648. PubMed ID: 33861487 [TBL] [Abstract][Full Text] [Related]
11. Catalyst-electrolyte interface chemistry for electrochemical CO Sa YJ; Lee CW; Lee SY; Na J; Lee U; Hwang YJ Chem Soc Rev; 2020 Sep; 49(18):6632-6665. PubMed ID: 32780048 [TBL] [Abstract][Full Text] [Related]
17. Systematic Analysis of Electrochemical CO₂ Reduction with Various Reaction Parameters using Combinatorial Reactors. Hashiba H; Yotsuhashi S; Deguchi M; Yamada Y ACS Comb Sci; 2016 Apr; 18(4):203-8. PubMed ID: 27003626 [TBL] [Abstract][Full Text] [Related]
18. Effects of the Catalyst Dynamic Changes and Influence of the Reaction Environment on the Performance of Electrochemical CO Chen J; Wang L Adv Mater; 2022 Jun; 34(25):e2103900. PubMed ID: 34595773 [TBL] [Abstract][Full Text] [Related]
19. Efficient electrochemical CO2 conversion powered by renewable energy. Kauffman DR; Thakkar J; Siva R; Matranga C; Ohodnicki PR; Zeng C; Jin R ACS Appl Mater Interfaces; 2015 Jul; 7(28):15626-32. PubMed ID: 26121278 [TBL] [Abstract][Full Text] [Related]
20. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Qiao J; Liu Y; Hong F; Zhang J Chem Soc Rev; 2014 Jan; 43(2):631-75. PubMed ID: 24186433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]