These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30599585)

  • 1. Reactor design and integration with product detection to accelerate screening of electrocatalysts for carbon dioxide reduction.
    Jones RJR; Wang Y; Lai Y; Shinde A; Gregoire JM
    Rev Sci Instrum; 2018 Dec; 89(12):124102. PubMed ID: 30599585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scanning Electrochemical Flow Cell with Online Mass Spectroscopy for Accelerated Screening of Carbon Dioxide Reduction Electrocatalysts.
    Lai Y; Jones RJR; Wang Y; Zhou L; Gregoire JM
    ACS Comb Sci; 2019 Oct; 21(10):692-704. PubMed ID: 31525292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Catalyst-Electrolyte Microenvironments to Optimize the Activity and Selectivity for the Electrochemical Reduction of CO
    Bui JC; Kim C; King AJ; Romiluyi O; Kusoglu A; Weber AZ; Bell AT
    Acc Chem Res; 2022 Feb; 55(4):484-494. PubMed ID: 35104114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing Catalysts Integrated in Gas-Diffusion Electrodes for CO
    Haaring R; Kang PW; Guo Z; Lee JW; Lee H
    Acc Chem Res; 2023 Oct; 56(19):2595-2605. PubMed ID: 37698057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of temperature and gas-liquid mass transfer on the operation of small electrochemical cells for the quantitative evaluation of CO
    Lobaccaro P; Singh MR; Clark EL; Kwon Y; Bell AT; Ager JW
    Phys Chem Chem Phys; 2016 Sep; 18(38):26777-26785. PubMed ID: 27722320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Observation of the Local Reaction Environment during the Electrochemical Reduction of CO
    Clark EL; Bell AT
    J Am Chem Soc; 2018 Jun; 140(22):7012-7020. PubMed ID: 29756446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Highly Porous Copper Electrocatalyst for Carbon Dioxide Reduction.
    Lv JJ; Jouny M; Luc W; Zhu W; Zhu JJ; Jiao F
    Adv Mater; 2018 Dec; 30(49):e1803111. PubMed ID: 30368917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances and Challenges for the Electrochemical Reduction of CO
    Jin S; Hao Z; Zhang K; Yan Z; Chen J
    Angew Chem Int Ed Engl; 2021 Sep; 60(38):20627-20648. PubMed ID: 33861487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical CO
    Cave ER; Montoya JH; Kuhl KP; Abram DN; Hatsukade T; Shi C; Hahn C; Nørskov JK; Jaramillo TF
    Phys Chem Chem Phys; 2017 Jun; 19(24):15856-15863. PubMed ID: 28585950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalyst-electrolyte interface chemistry for electrochemical CO
    Sa YJ; Lee CW; Lee SY; Na J; Lee U; Hwang YJ
    Chem Soc Rev; 2020 Sep; 49(18):6632-6665. PubMed ID: 32780048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrolytic CO
    Weekes DM; Salvatore DA; Reyes A; Huang A; Berlinguette CP
    Acc Chem Res; 2018 Apr; 51(4):910-918. PubMed ID: 29569896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ FTIR Reactor for Monitoring Gas-Phase Products during a (Photo)catalytic Reaction in the Liquid Phase.
    Telegeiev I; Thili O; Lanel A; Bazin P; Levaque Y; Fernandez C; El-Roz M
    Anal Chem; 2018 Dec; 90(24):14586-14592. PubMed ID: 30449082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced Catalyst Design and Reactor Configuration Upgrade in Electrochemical Carbon Dioxide Conversion.
    Wang Z; Zhou Y; Qiu P; Xia C; Fang W; Jin J; Huang L; Deng P; Su Y; Crespo-Otero R; Tian X; You B; Guo W; Di Tommaso D; Pang Y; Ding S; Xia BY
    Adv Mater; 2023 Dec; 35(52):e2303052. PubMed ID: 37589167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroorganic Synthesis under Flow Conditions.
    Elsherbini M; Wirth T
    Acc Chem Res; 2019 Dec; 52(12):3287-3296. PubMed ID: 31693339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydronium-Induced Switching between CO
    Seifitokaldani A; Gabardo CM; Burdyny T; Dinh CT; Edwards JP; Kibria MG; Bushuyev OS; Kelley SO; Sinton D; Sargent EH
    J Am Chem Soc; 2018 Mar; 140(11):3833-3837. PubMed ID: 29504748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic Analysis of Electrochemical CO₂ Reduction with Various Reaction Parameters using Combinatorial Reactors.
    Hashiba H; Yotsuhashi S; Deguchi M; Yamada Y
    ACS Comb Sci; 2016 Apr; 18(4):203-8. PubMed ID: 27003626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of the Catalyst Dynamic Changes and Influence of the Reaction Environment on the Performance of Electrochemical CO
    Chen J; Wang L
    Adv Mater; 2022 Jun; 34(25):e2103900. PubMed ID: 34595773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient electrochemical CO2 conversion powered by renewable energy.
    Kauffman DR; Thakkar J; Siva R; Matranga C; Ohodnicki PR; Zeng C; Jin R
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15626-32. PubMed ID: 26121278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels.
    Qiao J; Liu Y; Hong F; Zhang J
    Chem Soc Rev; 2014 Jan; 43(2):631-75. PubMed ID: 24186433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.