These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30599585)

  • 21. Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide.
    Kortlever R; Shen J; Schouten KJ; Calle-Vallejo F; Koper MT
    J Phys Chem Lett; 2015 Oct; 6(20):4073-82. PubMed ID: 26722779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Molecular Surface Functionalization Approach to Tuning Nanoparticle Electrocatalysts for Carbon Dioxide Reduction.
    Cao Z; Kim D; Hong D; Yu Y; Xu J; Lin S; Wen X; Nichols EM; Jeong K; Reimer JA; Yang P; Chang CJ
    J Am Chem Soc; 2016 Jul; 138(26):8120-5. PubMed ID: 27322487
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemical Reduction of CO
    Bagemihl I; Bhatraju C; van Ommen JR; van Steijn V
    ACS Sustain Chem Eng; 2022 Sep; 10(38):12580-12587. PubMed ID: 36189111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrochemical Behavior of Pyridinium and N-Methyl Pyridinium Cations in Aqueous Electrolytes for CO
    Lebègue E; Agullo J; Bélanger D
    ChemSusChem; 2018 Jan; 11(1):219-228. PubMed ID: 29024548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Silver supported on titania as an active catalyst for electrochemical carbon dioxide reduction.
    Ma S; Lan Y; Perez GM; Moniri S; Kenis PJ
    ChemSusChem; 2014 Mar; 7(3):866-74. PubMed ID: 24474718
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microenvironment Engineering for the Electrocatalytic CO
    Lv JJ; Yin R; Zhou L; Li J; Kikas R; Xu T; Wang ZJ; Jin H; Wang X; Wang S
    Angew Chem Int Ed Engl; 2022 Sep; 61(39):e202207252. PubMed ID: 35819244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic and electrocatalytic oxidation of ethanol over palladium-based nanoalloy catalysts.
    Yin J; Shan S; Ng MS; Yang L; Mott D; Fang W; Kang N; Luo J; Zhong CJ
    Langmuir; 2013 Jul; 29(29):9249-58. PubMed ID: 23841935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction.
    Wang P; Qiao M; Shao Q; Pi Y; Zhu X; Li Y; Huang X
    Nat Commun; 2018 Nov; 9(1):4933. PubMed ID: 30467320
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct Evidence of Local pH Change and the Role of Alkali Cation during CO
    Zhang F; Co AC
    Angew Chem Int Ed Engl; 2020 Jan; 59(4):1674-1681. PubMed ID: 31721382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO
    Huo S; Weng Z; Wu Z; Zhong Y; Wu Y; Fang J; Wang H
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28519-28526. PubMed ID: 28786653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular electrocatalysts can mediate fast, selective CO
    Ren S; Joulié D; Salvatore D; Torbensen K; Wang M; Robert M; Berlinguette CP
    Science; 2019 Jul; 365(6451):367-369. PubMed ID: 31346062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanistic insights into C2 and C3 product generation using Ni
    Paris AR; Bocarsly AB
    Faraday Discuss; 2019 Jul; 215(0):192-204. PubMed ID: 30942204
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic studies of CO
    Hubble RA; Lim JY; Dennis JS
    Faraday Discuss; 2016 Oct; 192():529-544. PubMed ID: 27470202
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Co-electrolysis of seawater and carbon dioxide inside a microfluidic reactor to synthesize speciality organics.
    Rarotra S; Singh AK; Mandal TK; Bandyopadhyay D
    Sci Rep; 2023 Jun; 13(1):10298. PubMed ID: 37365171
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accumulation of Liquid Byproducts in an Electrolyte as a Critical Factor That Compromises Long-Term Functionality of CO
    Sahin B; Kimberly Raymond S; Ntourmas F; Pastusiak R; Wiesner-Fleischer K; Fleischer M; Simon E; Hinrichsen O
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):45844-45854. PubMed ID: 37729427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High Performance Fe Porphyrin/Ionic Liquid Co-catalyst for Electrochemical CO2 Reduction.
    Choi J; Benedetti TM; Jalili R; Walker A; Wallace GG; Officer DL
    Chemistry; 2016 Sep; 22(40):14158-61. PubMed ID: 27464300
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential Electrochemical Mass Spectrometer Cell Design for Online Quantification of Products Produced during Electrochemical Reduction of CO₂.
    Clark EL; Singh MR; Kwon Y; Bell AT
    Anal Chem; 2015 Aug; 87(15):8013-20. PubMed ID: 26153829
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tailoring Copper Nanocrystals towards C2 Products in Electrochemical CO2 Reduction.
    Loiudice A; Lobaccaro P; Kamali EA; Thao T; Huang BH; Ager JW; Buonsanti R
    Angew Chem Int Ed Engl; 2016 May; 55(19):5789-92. PubMed ID: 27059162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding Moisture and Carbon Dioxide Involved Interfacial Reactions on Electrochemical Performance of Lithium-Air Batteries Catalyzed by Gold/Manganese-Dioxide.
    Wang G; Huang L; Liu S; Xie J; Zhang S; Zhu P; Cao G; Zhao X
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):23876-84. PubMed ID: 26466174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Translating Catalyst-Polymer Composites from Liquid to Gas-Fed CO
    Yao L; Yin C; Rivera-Cruz KE; McCrory CCL; Singh N
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31438-31448. PubMed ID: 37348071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.