These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30599603)

  • 1. Modeling and compensation of cross-axis coupling in an electrostatic accelerometer for testing the equivalence principle.
    Liu TY; Wang SY; Han FT; Wu QP
    Rev Sci Instrum; 2018 Dec; 89(12):124501. PubMed ID: 30599603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Fabrication of a Differential Electrostatic Accelerometer for Space-Station Testing of the Equivalence Principle.
    Han F; Liu T; Li L; Wu Q
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27517927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Locking Avoidance and Stiffness Compensation of a Three-Axis Micromachined Electrostatically Suspended Accelerometer.
    Yin Y; Sun B; Han F
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27213376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoupling Control of Micromachined Spinning-Rotor Gyroscope with Electrostatic Suspension.
    Sun B; Wang S; Li H; He X
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27775624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and compensation of quadratic terms of a space electrostatic accelerometer.
    Ma Y; Bai YZ; Li HY; Zhou ZB; Zhou Z
    Rev Sci Instrum; 2018 Nov; 89(11):114502. PubMed ID: 30501275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments.
    Yan S; Xie Y; Zhang M; Deng Z; Tu L
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29156587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotation control of a variable-capacitance electrostatic motor for space equivalence principle tests with rotating masses.
    Liu TY; Wang SY; Han FT; Wu QP
    Rev Sci Instrum; 2020 Jan; 91(1):015003. PubMed ID: 32012593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimizing cross-axis sensitivity in grating-based optomechanical accelerometers.
    Lu Q; Wang C; Bai J; Wang K; Lou S; Jiao X; Han D; Yang G; Liu D; Yang Y
    Opt Express; 2016 Apr; 24(8):9094-111. PubMed ID: 27137337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new z-axis resonant micro-accelerometer based on electrostatic stiffness.
    Yang B; Wang X; Dai B; Liu X
    Sensors (Basel); 2015 Jan; 15(1):687-702. PubMed ID: 25569748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling Interference between Eddy Current Sensors for the Radial Displacement Measurement of a Cylindrical Target.
    Zhang W; Bu J; Li D; Zhang K; Zhou M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on Misalignment Angle Compensation during Scale Factor Matching for Two Pairs of Accelerometers in a Gravity Gradient Instrument.
    Huang X; Deng Z; Xie Y; Fan J; Hu C; Tu L
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29670021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digital Tri-Axis Accelerometer with X/Y-Axial Resonators and Z-Axial Capacitive Seesaw.
    Xia D; Yao M; Li J
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 35893172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Mathematical Model of a Piezo-Resistive Eight-Beam Three-Axis Accelerometer with Simulation and Experimental Validation.
    Song J; He C; Wang R; Xue C; Zhang W
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30373206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a Micromachined Z-axis Tunneling Magnetoresistive Accelerometer with Electrostatic Force Feedback.
    Yang B; Wang B; Yan H; Gao X
    Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30823622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Low-Noise Micromachined Accelerometer with Reconfigurable Electrodes for Resonance Suppression.
    Ahmed Z; Duruaku C; Edalatfar F; Moallem M; Bahreyni B
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. System Error Compensation Methodology Based on a Neural Network for a Micromachined Inertial Measurement Unit.
    Liu SQ; Zhu R
    Sensors (Basel); 2016 Jan; 16(2):175. PubMed ID: 26840314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, fabrication and levitation experiments of a micromachined electrostatically suspended six-axis accelerometer.
    Cui F; Liu W; Chen W; Zhang W; Wu X
    Sensors (Basel); 2011; 11(12):11206-34. PubMed ID: 22247662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, Fabrication, and Modeling of a Novel Dual-Axis Control Input PZT Gyroscope.
    Chang CY; Chen TL
    Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29088084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noise investigation of an electrostatic accelerometer by a high-voltage levitation method combined with a translation-tilt compensation pendulum bench.
    Hu S; Pei S; Hu M; Bai Y; Li H; Liu L; Yang B; Wu S; Zhou Z
    Rev Sci Instrum; 2021 Jun; 92(6):064502. PubMed ID: 34243500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical Structural Design of a MEMS-Based Piezoresistive Accelerometer for Head Injuries Monitoring: A Computational Analysis by Increments of the Sensor Mass Moment of Inertia.
    Messina M; Njuguna J; Palas C
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29351221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.