These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Re-weighting of Sound Localization Cues by Audiovisual Training. Kumpik DP; Campbell C; Schnupp JWH; King AJ Front Neurosci; 2019; 13():1164. PubMed ID: 31802997 [TBL] [Abstract][Full Text] [Related]
3. Binaural-cue Weighting and Training-Induced Reweighting Across Frequencies. Klingel M; Laback B Trends Hear; 2022; 26():23312165221104872. PubMed ID: 35791626 [TBL] [Abstract][Full Text] [Related]
4. Envelope coding in the lateral superior olive. I. Sensitivity to interaural time differences. Joris PX; Yin TC J Neurophysiol; 1995 Mar; 73(3):1043-62. PubMed ID: 7608754 [TBL] [Abstract][Full Text] [Related]
5. Effects of interaural pitch matching and auditory image centering on binaural sensitivity in cochlear implant users. Kan A; Litovsky RY; Goupell MJ Ear Hear; 2015; 36(3):e62-8. PubMed ID: 25565660 [TBL] [Abstract][Full Text] [Related]
6. Processing of binaural spatial information in human auditory cortex: neuromagnetic responses to interaural timing and level differences. Johnson BW; Hautus MJ Neuropsychologia; 2010 Jul; 48(9):2610-9. PubMed ID: 20466010 [TBL] [Abstract][Full Text] [Related]
7. Slow Temporal Integration Enables Robust Neural Coding and Perception of a Cue to Sound Source Location. Brown AD; Tollin DJ J Neurosci; 2016 Sep; 36(38):9908-21. PubMed ID: 27656028 [TBL] [Abstract][Full Text] [Related]
8. Interaction of interaural cues and their contribution to the lateralisation of Mongolian gerbils (Meriones unguiculatus). Tolnai S; Beutelmann R; Klump GM J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 May; 204(5):435-448. PubMed ID: 29476321 [TBL] [Abstract][Full Text] [Related]
9. Neuronal sensitivity to interaural time differences in the sound envelope in the auditory cortex of the pallid bat. Lohuis TD; Fuzessery ZM Hear Res; 2000 May; 143(1-2):43-57. PubMed ID: 10771183 [TBL] [Abstract][Full Text] [Related]
10. Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive. Joris PX J Neurophysiol; 1996 Oct; 76(4):2137-56. PubMed ID: 8899590 [TBL] [Abstract][Full Text] [Related]
11. Behavioural sensitivity to binaural spatial cues in ferrets: evidence for plasticity in the duplex theory of sound localization. Keating P; Nodal FR; King AJ Eur J Neurosci; 2014 Jan; 39(2):197-206. PubMed ID: 24256073 [TBL] [Abstract][Full Text] [Related]
12. Coherent Coding of Enhanced Interaural Cues Improves Sound Localization in Noise With Bilateral Cochlear Implants. Williges B; Jürgens T; Hu H; Dietz M Trends Hear; 2018; 22():2331216518781746. PubMed ID: 29956589 [TBL] [Abstract][Full Text] [Related]
13. Evidence for cue-independent spatial representation in the human auditory cortex during active listening. Higgins NC; McLaughlin SA; Rinne T; Stecker GC Proc Natl Acad Sci U S A; 2017 Sep; 114(36):E7602-E7611. PubMed ID: 28827357 [TBL] [Abstract][Full Text] [Related]
14. Localization of sound in rooms. V. Binaural coherence and human sensitivity to interaural time differences in noise. Rakerd B; Hartmann WM J Acoust Soc Am; 2010 Nov; 128(5):3052-63. PubMed ID: 21110600 [TBL] [Abstract][Full Text] [Related]
15. Intracochlear Measurements of Interaural Time and Level Differences Conveyed by Bilateral Bone Conduction Systems. Farrell NF; Banakis Hartl RM; Benichoux V; Brown AD; Cass SP; Tollin DJ Otol Neurotol; 2017 Dec; 38(10):1476-1483. PubMed ID: 29084088 [TBL] [Abstract][Full Text] [Related]
16. Cortical Representation of Interaural Time Difference Is Impaired by Deafness in Development: Evidence from Children with Early Long-term Access to Sound through Bilateral Cochlear Implants Provided Simultaneously. Easwar V; Yamazaki H; Deighton M; Papsin B; Gordon K J Neurosci; 2017 Mar; 37(9):2349-2361. PubMed ID: 28123078 [TBL] [Abstract][Full Text] [Related]
17. The influence of externalization and spatial cues on the generation of auditory brainstem responses and middle latency responses. Junius D; Riedel H; Kollmeier B Hear Res; 2007 Mar; 225(1-2):91-104. PubMed ID: 17270375 [TBL] [Abstract][Full Text] [Related]
18. Time-Varying Distortions of Binaural Information by Bilateral Hearing Aids: Effects of Nonlinear Frequency Compression. Brown AD; Rodriguez FA; Portnuff CD; Goupell MJ; Tollin DJ Trends Hear; 2016 Oct; 20():. PubMed ID: 27698258 [TBL] [Abstract][Full Text] [Related]
19. Similar patterns of learning and performance variability for human discrimination of interaural time differences at high and low frequencies. Zhang Y; Wright BA J Acoust Soc Am; 2007 Apr; 121(4):2207-16. PubMed ID: 17471734 [TBL] [Abstract][Full Text] [Related]
20. Early auditory experience induces frequency-specific, adaptive plasticity in the forebrain gaze fields of the barn owl. Miller GL; Knudsen EI J Neurophysiol; 2001 May; 85(5):2184-94. PubMed ID: 11353033 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]