BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 30599716)

  • 1. Structure, stability, electronic, magnetic, and catalytic properties of monometallic Pd, Au, and bimetallic Pd-Au core-shell nanoparticles.
    Wang Q; Lu X; Zhen Y; Li WQ; Chen GH; Yang Y
    J Chem Phys; 2018 Dec; 149(24):244307. PubMed ID: 30599716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Approach to Synthesize Au@ZnO Core-Shell Nanoparticles and Their Application for Highly Sensitive and Selective Gas Sensors.
    Majhi SM; Rai P; Yu YT
    ACS Appl Mater Interfaces; 2015 May; 7(18):9462-8. PubMed ID: 25901904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic structure of Au-Pd bimetallic alloyed nanoparticles.
    Ding Y; Fan F; Tian Z; Wang ZL
    J Am Chem Soc; 2010 Sep; 132(35):12480-6. PubMed ID: 20712315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insight on the Interaction of Methanol-Selective Oxidation Intermediates with Au- or/and Pd-Containing Monometallic and Bimetallic Core@Shell Catalysts.
    Czelej K; Cwieka K; Colmenares JC; Kurzydlowski KJ
    Langmuir; 2016 Aug; 32(30):7493-502. PubMed ID: 27373791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DFT study of Fe-Ni core-shell nanoparticles: stability, catalytic activity, and interaction with carbon atom for single-walled carbon nanotube growth.
    Yang Z; Wang Q; Shan X; Li WQ; Chen GH; Zhu H
    J Chem Phys; 2015 Feb; 142(7):074306. PubMed ID: 25702014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling the Morphology of Au-Pd Heterodimer Nanoparticles by Surface Ligands.
    Kluenker M; Connolly BM; Marolf DM; Nawaz Tahir M; Korschelt K; Simon P; Köhler U; Plana-Ruiz S; Barton B; Panthöfer M; Kolb U; Tremel W
    Inorg Chem; 2018 Nov; 57(21):13640-13652. PubMed ID: 30289701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and evaluation of Au-Pd core-shell nanocomposites for dechlorination of diclofenac in water.
    Wang X; Li JR; Fu ML; Yuan B; Cui HJ; Wang YF
    Environ Technol; 2015; 36(9-12):1510-8. PubMed ID: 25441536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bimetallic Au-Pd nanoparticles supported on silica with a tunable core@shell structure: enhanced catalytic activity of Pd(core)-Au(shell) over Au(core)-Pd(shell).
    Kalita GD; Sarmah PP; Kalita G; Das P
    Nanoscale Adv; 2021 Sep; 3(18):5399-5416. PubMed ID: 36132629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. General Synthetic Route toward Highly Dispersed Ultrafine Pd-Au Alloy Nanoparticles Enabled by Imidazolium-Based Organic Polymers.
    Gong Y; Zhong H; Liu W; Zhang B; Hu S; Wang R
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):776-786. PubMed ID: 29235853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles.
    Hosseinkhani B; Søbjerg LS; Rotaru AE; Emtiazi G; Skrydstrup T; Meyer RL
    Biotechnol Bioeng; 2012 Jan; 109(1):45-52. PubMed ID: 21830201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimised photocatalytic hydrogen production using core-shell AuPd promoters with controlled shell thickness.
    Jones W; Su R; Wells PP; Shen Y; Dimitratos N; Bowker M; Morgan D; Iversen BB; Chutia A; Besenbacher F; Hutchings G
    Phys Chem Chem Phys; 2014 Dec; 16(48):26638-44. PubMed ID: 25363813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance hydrogen evolution reaction catalysis achieved by small core-shell copper nanoparticles.
    Liu C; Dong H; Ji Y; Rujisamphan N; Li Y
    J Colloid Interface Sci; 2019 Sep; 551():130-137. PubMed ID: 31075627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework.
    Jiang HL; Akita T; Ishida T; Haruta M; Xu Q
    J Am Chem Soc; 2011 Feb; 133(5):1304-6. PubMed ID: 21214205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly catalytic spherical carbon nanocomposites allowing tunable activity via controllable Au-Pd doping.
    Tang S; Vongehr S; He G; Chen L; Meng X
    J Colloid Interface Sci; 2012 Jun; 375(1):125-33. PubMed ID: 22425251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable bimetallic Au-Pd@CeO
    Liu Y; Wang Q; Wu L; Long Y; Li J; Song S; Zhang H
    Nanoscale; 2019 Jul; 11(27):12932-12937. PubMed ID: 31259328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications.
    Yang G; Chen D; Lv P; Kong X; Sun Y; Wang Z; Yuan Z; Liu H; Yang J
    Sci Rep; 2016 Oct; 6():35252. PubMed ID: 27734945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties.
    Samal AK; Polavarapu L; Rodal-Cedeira S; Liz-Marzán LM; Pérez-Juste J; Pastoriza-Santos I
    Langmuir; 2013 Dec; 29(48):15076-82. PubMed ID: 24261458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the surface properties of AuPd nanoparticles for adsorption of O and CO.
    Chepkasov IV; Zamulin IS; Baidyshev VS; Kvashnin AG
    Phys Chem Chem Phys; 2023 Dec; 25(48):33031-33037. PubMed ID: 38037396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DFT study of bimetallic palladium-gold clusters Pd(n)Au(m) of low nuclearities (n + m ≤ 14).
    Zanti G; Peeters D
    J Phys Chem A; 2010 Sep; 114(38):10345-56. PubMed ID: 20812747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Fatty Acid Photodecarboxylation over Bimetallic Au-Pd Core-Shell Nanoparticles Deposited on TiO
    Yang H; Tian L; Grirrane A; García-Baldoví A; Hu J; Sastre G; Hu C; García H
    ACS Catal; 2023 Nov; 13(22):15143-15154. PubMed ID: 38352955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.