These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 30599736)

  • 1. Solving the Schrödinger equation of hydrogen molecule with the free complement-local Schrödinger equation method: Potential energy curves of the ground and singly excited singlet and triplet states, Σ, Π, Δ, and Φ.
    Nakashima H; Nakatsuji H
    J Chem Phys; 2018 Dec; 149(24):244116. PubMed ID: 30599736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solving the Schrödinger equation of hydrogen molecules with the free-complement variational theory: essentially exact potential curves and vibrational levels of the ground and excited states of the Σ symmetry.
    Kurokawa YI; Nakashima H; Nakatsuji H
    Phys Chem Chem Phys; 2019 Mar; 21(12):6327-6340. PubMed ID: 30480681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.
    Nakatsuji H
    Acc Chem Res; 2012 Sep; 45(9):1480-90. PubMed ID: 22686372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free-complement local-Schrödinger-equation method for solving the Schrödinger equation of atoms and molecules: basic theories and features.
    Nakatsuji H; Nakashima H
    J Chem Phys; 2015 Feb; 142(8):084117. PubMed ID: 25725722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solving the Schrödinger equation of the hydrogen molecule with the free-complement variational theory: essentially exact potential curves and vibrational levels of the ground and excited states of Π symmetry.
    Kurokawa YI; Nakashima H; Nakatsuji H
    Phys Chem Chem Phys; 2020 Jun; 22(24):13489-13497. PubMed ID: 32529196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate calculations on the 22 electronic states and 54 spin-orbit states of the O2 molecule: potential energy curves, spectroscopic parameters and spin-orbit coupling.
    Liu H; Shi D; Sun J; Zhu Z; Shulin Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():216-29. PubMed ID: 24486866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MRCI study of the spectroscopic parameters and transition properties of the 36 low-lying electronic states of the B
    Xing W; Shi D; Sun J; Zhu Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Oct; 185():349-364. PubMed ID: 28601039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solving the Schrödinger equation of atoms and molecules: Chemical-formula theory, free-complement chemical-formula theory, and intermediate variational theory.
    Nakatsuji H; Nakashima H; Kurokawa YI
    J Chem Phys; 2018 Sep; 149(11):114105. PubMed ID: 30243277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solving the Schrödinger equation of atoms and molecules with the free-complement chemical-formula theory: First-row atoms and small molecules.
    Nakatsuji H; Nakashima H; Kurokawa YI
    J Chem Phys; 2018 Sep; 149(11):114106. PubMed ID: 30243284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solving the Schrödinger equation of atoms and molecules without analytical integration based on the free iterative-complement-interaction wave function.
    Nakatsuji H; Nakashima H; Kurokawa Y; Ishikawa A
    Phys Rev Lett; 2007 Dec; 99(24):240402. PubMed ID: 18233425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solving the Schrödinger equation with the free-complement chemical-formula theory: Variational study of the ground and excited states of Be and Li atoms.
    Nakatsuji H; Nakashima H
    J Chem Phys; 2019 Jan; 150(4):044105. PubMed ID: 30709316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential Energy Curves of the Low-Lying Five
    Nakashima H; Nakatsuji H
    J Chem Theory Comput; 2023 Oct; 19(19):6733-6744. PubMed ID: 37706317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solving the electron and electron-nuclear Schrodinger equations for the excited states of helium atom with the free iterative-complement-interaction method.
    Nakashima H; Hijikata Y; Nakatsuji H
    J Chem Phys; 2008 Apr; 128(15):154108. PubMed ID: 18433191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate calculations on 9 Λ-S and 28 Ω states of NSe radical in the gas phase: potential energy curves, spectroscopic parameters and spin-orbit couplings.
    Shi D; Li P; Sun J; Zhu Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 117():109-19. PubMed ID: 23988526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photodissociation of S
    Sun ZF; Farooq Z; Parker DH; Martin PJJ; Western CM
    J Phys Chem A; 2019 Aug; 123(32):6886-6896. PubMed ID: 31322887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction of H
    Pelevkin AV; Loukhovitski BI; Sharipov AS
    J Phys Chem A; 2017 Dec; 121(50):9599-9611. PubMed ID: 29172498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solving the Schrödinger and Dirac equations of hydrogen molecular ion accurately by the free iterative complement interaction method.
    Ishikawa A; Nakashima H; Nakatsuji H
    J Chem Phys; 2008 Mar; 128(12):124103. PubMed ID: 18376904
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Huang C; Zhang H; Cheng X
    J Phys Chem A; 2022 Apr; 126(13):2061-2074. PubMed ID: 35324182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MRCI study on electronic spectrum of 13 electronic states of SiP molecule.
    Shi D; Xing W; Liu H; Sun J; Zhu Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():536-45. PubMed ID: 22842348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solving the Schrodinger equation for helium atom and its isoelectronic ions with the free iterative complement interaction (ICI) method.
    Nakashima H; Nakatsuji H
    J Chem Phys; 2007 Dec; 127(22):224104. PubMed ID: 18081387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.