These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
909 related articles for article (PubMed ID: 30599925)
1. Identification and quantification of free and bound phenolic compounds contained in the high-molecular weight melanoidin fractions derived from two different types of cocoa beans by UHPLC-DAD-ESI-HR-MS Oracz J; Nebesny E; Żyżelewicz D Food Res Int; 2019 Jan; 115():135-149. PubMed ID: 30599925 [TBL] [Abstract][Full Text] [Related]
2. Sensory-guided decomposition of roasted cocoa nibs (Theobroma cacao) and structure determination of taste-active polyphenols. Stark T; Bareuther S; Hofmann T J Agric Food Chem; 2005 Jun; 53(13):5407-18. PubMed ID: 15969527 [TBL] [Abstract][Full Text] [Related]
4. Determination of free, esterified, glycosylated and insoluble-bound phenolics composition in the edible part of araticum fruit (Annona crassiflora Mart.) and its by-products by HPLC-ESI-MS/MS. Arruda HS; Pereira GA; de Morais DR; Eberlin MN; Pastore GM Food Chem; 2018 Apr; 245():738-749. PubMed ID: 29287435 [TBL] [Abstract][Full Text] [Related]
5. Isolation, structure determination, synthesis, and sensory activity of N-phenylpropenoyl-L-amino acids from cocoa (Theobroma cacao). Stark T; Hofmann T J Agric Food Chem; 2005 Jun; 53(13):5419-28. PubMed ID: 15969528 [TBL] [Abstract][Full Text] [Related]
6. Characterization of new flavan-3-ol derivatives in fermented cocoa beans. Fayeulle N; Vallverdu-Queralt A; Meudec E; Hue C; Boulanger R; Cheynier V; Sommerer N Food Chem; 2018 Sep; 259():207-212. PubMed ID: 29680045 [TBL] [Abstract][Full Text] [Related]
7. Phenolic profiles, antioxidant activities and cytoprotective effects of different phenolic fractions from oil palm (Elaeis guineensis Jacq.) fruits treated by ultra-high pressure. Zhou J; Ma Y; Jia Y; Pang M; Cheng G; Cai S Food Chem; 2019 Aug; 288():68-77. PubMed ID: 30902316 [TBL] [Abstract][Full Text] [Related]
8. Characterization of phenolic and other polar compounds in peel and flesh of pink guava (Psidium guajava L. cv. 'Criolla') by ultra-high performance liquid chromatography with diode array and mass spectrometric detection. Rojas-Garbanzo C; Zimmermann BF; Schulze-Kaysers N; Schieber A Food Res Int; 2017 Oct; 100(Pt 3):445-453. PubMed ID: 28964367 [TBL] [Abstract][Full Text] [Related]
9. Phenolic compounds profile of different berry parts from novel Vitis vinifera L. red grape genotypes and Tempranillo using HPLC-DAD-ESI-MS/MS: A varietal differentiation tool. Pérez-Navarro J; Izquierdo-Cañas PM; Mena-Morales A; Martínez-Gascueña J; Chacón-Vozmediano JL; García-Romero E; Hermosín-Gutiérrez I; Gómez-Alonso S Food Chem; 2019 Oct; 295():350-360. PubMed ID: 31174768 [TBL] [Abstract][Full Text] [Related]
10. In Vitro Antioxidant Activity and FTIR Characterization of High-Molecular Weight Melanoidin Fractions from Different Types of Cocoa Beans. Oracz J; Zyzelewicz D Antioxidants (Basel); 2019 Nov; 8(11):. PubMed ID: 31731784 [TBL] [Abstract][Full Text] [Related]
11. Sapucaia nut (Lecythis pisonis Cambess) and its by-products: A promising and underutilized source of bioactive compounds. Part II: Phenolic compounds profile. Demoliner F; de Britto Policarpi P; Vasconcelos LFL; Vitali L; Micke GA; Block JM Food Res Int; 2018 Oct; 112():434-442. PubMed ID: 30131155 [TBL] [Abstract][Full Text] [Related]
12. Intravariety Diversity of Bioactive Compounds in Trinitario Cocoa Beans with Different Degrees of Fermentation. Febrianto NA; Zhu F J Agric Food Chem; 2019 Mar; 67(11):3150-3158. PubMed ID: 30794392 [TBL] [Abstract][Full Text] [Related]
13. Separation and characterization of soluble esterified and glycoside-bound phenolic compounds in dry-blanched peanut skins by liquid chromatography-electrospray ionization mass spectrometry. Ma Y; Kosińska-Cagnazzo A; Kerr WL; Amarowicz R; Swanson RB; Pegg RB J Agric Food Chem; 2014 Nov; 62(47):11488-504. PubMed ID: 25354220 [TBL] [Abstract][Full Text] [Related]
14. Quantitative analysis of N-phenylpropenoyl-L-amino acids in roasted coffee and cocoa powder by means of a stable isotope dilution assay. Stark T; Justus H; Hofmann T J Agric Food Chem; 2006 Apr; 54(8):2859-67. PubMed ID: 16608201 [TBL] [Abstract][Full Text] [Related]
15. Application of metabolomics profiling in the analysis of metabolites and taste quality in different subtypes of white tea. Yang C; Hu Z; Lu M; Li P; Tan J; Chen M; Lv H; Zhu Y; Zhang Y; Guo L; Peng Q; Dai W; Lin Z Food Res Int; 2018 Apr; 106():909-919. PubMed ID: 29580004 [TBL] [Abstract][Full Text] [Related]
16. Rapid screening and identification of phenolic antioxidants in Hydrocotyle sibthorpioides Lam. by UPLC-ESI-MS/MS. Kumari S; Elancheran R; Kotoky J; Devi R Food Chem; 2016 Jul; 203():521-529. PubMed ID: 26948646 [TBL] [Abstract][Full Text] [Related]
17. Quantification of PAH4 in roasted cocoa beans using QuEChERS and dispersive liquid-liquid micro-extraction (DLLME) coupled with HPLC-FLD. Agus BAP; Hussain N; Selamat J Food Chem; 2020 Jan; 303():125398. PubMed ID: 31470272 [TBL] [Abstract][Full Text] [Related]
18. Cocoa beans of different origins and varieties and their derived products contamination with polycyclic aromatic hydrocarbons. Ciecierska M Food Chem; 2020 Jul; 317():126408. PubMed ID: 32070845 [TBL] [Abstract][Full Text] [Related]
19. Degradation of (-)-epicatechin and procyanidin B2 in aqueous and lipidic model systems. first evidence of "chemical" flavan-3-ol oligomers in processed cocoa. De Taeye C; Cibaka ML; Jerkovic V; Collin S J Agric Food Chem; 2014 Sep; 62(36):9002-16. PubMed ID: 25167469 [TBL] [Abstract][Full Text] [Related]
20. Analyses of polyphenols in cacao liquor, cocoa, and chocolate by normal-phase and reversed-phase HPLC. Natsume M; Osakabe N; Yamagishi M; Takizawa T; Nakamura T; Miyatake H; Hatano T; Yoshida T Biosci Biotechnol Biochem; 2000 Dec; 64(12):2581-7. PubMed ID: 11210120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]