These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 30600031)
1. Mineralized layered films of xanthan and chitosan stabilized by polysaccharide interactions: A promising material for bone tissue repair. Aguiar AE; de O Silva M; Rodas ACD; Bertran CA Carbohydr Polym; 2019 Mar; 207():480-491. PubMed ID: 30600031 [TBL] [Abstract][Full Text] [Related]
2. Structural, Thermal, Physical, Mechanical, and Barrier Properties of Chitosan Films with the Addition of Xanthan Gum. de Morais Lima M; Carneiro LC; Bianchini D; Dias AR; Zavareze ED; Prentice C; Moreira AD J Food Sci; 2017 Mar; 82(3):698-705. PubMed ID: 28218968 [TBL] [Abstract][Full Text] [Related]
3. Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength. Zima A Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 193():175-184. PubMed ID: 29241052 [TBL] [Abstract][Full Text] [Related]
4. Characterization of biomimetic calcium phosphate on phosphorylated chitosan films. Chesnutt BM; Yuan Y; Brahmandam N; Yang Y; Ong JL; Haggard WO; Bumgardner JD J Biomed Mater Res A; 2007 Aug; 82(2):343-53. PubMed ID: 17295230 [TBL] [Abstract][Full Text] [Related]
5. Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ. Li J; Chen Y; Yin Y; Yao F; Yao K Biomaterials; 2007 Feb; 28(5):781-90. PubMed ID: 17056107 [TBL] [Abstract][Full Text] [Related]
6. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects. Cai K; Rechtenbach A; Hao J; Bossert J; Jandt KD Biomaterials; 2005 Oct; 26(30):5960-71. PubMed ID: 15913761 [TBL] [Abstract][Full Text] [Related]
7. Physicochemical and cell adhesion properties of chitosan films prepared from sugar and phosphate-containing solutions. Bettini R; Romani AA; Morganti MM; Borghetti AF Eur J Pharm Biopharm; 2008 Jan; 68(1):74-81. PubMed ID: 17881204 [TBL] [Abstract][Full Text] [Related]
8. Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering. Zhang J; Nie J; Zhang Q; Li Y; Wang Z; Hu Q J Biomater Sci Polym Ed; 2014; 25(1):61-74. PubMed ID: 24053536 [TBL] [Abstract][Full Text] [Related]
9. Control of cell adhesion and proliferation utilizing polysaccharide composite film scaffolds. Iijima K; Tsuji Y; Kuriki I; Kakimoto A; Nikaido Y; Ninomiya R; Iyoda T; Fukai F; Hashizume M Colloids Surf B Biointerfaces; 2017 Dec; 160():228-237. PubMed ID: 28942157 [TBL] [Abstract][Full Text] [Related]
10. Hybrid chitosan/β-1,3-glucan matrix of bone scaffold enhances osteoblast adhesion, spreading and proliferation via promotion of serum protein adsorption. Przekora A; Benko A; Blazewicz M; Ginalska G Biomed Mater; 2016 Jul; 11(4):045001. PubMed ID: 27388048 [TBL] [Abstract][Full Text] [Related]
11. Bioinspired double polysaccharides-based nanohybrid scaffold for bone tissue engineering. Fan T; Chen J; Pan P; Zhang Y; Hu Y; Liu X; Shi X; Zhang Q Colloids Surf B Biointerfaces; 2016 Nov; 147():217-223. PubMed ID: 27518453 [TBL] [Abstract][Full Text] [Related]
12. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
13. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration. Uswatta SP; Okeke IU; Jayasuriya AC Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():505-12. PubMed ID: 27612741 [TBL] [Abstract][Full Text] [Related]
14. Antimicrobial and biocompatible fluorescent hydroxyapatite-chitosan nanocomposite films for biomedical applications. Banerjee S; Bagchi B; Bhandary S; Kool A; Hoque NA; Biswas P; Pal K; Thakur P; Das K; Karmakar P; Das S Colloids Surf B Biointerfaces; 2018 Nov; 171():300-307. PubMed ID: 30048905 [TBL] [Abstract][Full Text] [Related]
15. A comparison of Thai silk fibroin-based and chitosan-based materials on in vitro biocompatibility for bone substitutes. Vachiraroj N; Ratanavaraporn J; Damrongsakkul S; Pichyangkura R; Banaprasert T; Kanokpanont S Int J Biol Macromol; 2009 Dec; 45(5):470-7. PubMed ID: 19660495 [TBL] [Abstract][Full Text] [Related]
17. Synergistic combination of natural bioadhesive bael fruit gum and chitosan/nano-hydroxyapatite: A ternary bioactive nanohybrid for bone tissue engineering. Mirza S; Zia I; Jolly R; Kazmi S; Owais M; Shakir M Int J Biol Macromol; 2018 Nov; 119():215-224. PubMed ID: 30036627 [TBL] [Abstract][Full Text] [Related]
18. Cell Adhesion and Proliferation on Sulfonated and Non-Modified Chitosan Films. Martínez-Campos E; Civantos A; Redondo JA; Guzmán R; Pérez-Perrino M; Gallardo A; Ramos V; Aranaz I AAPS PharmSciTech; 2017 May; 18(4):974-982. PubMed ID: 27634481 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of novel bioactive hydroxyapatite-chitosan-silica hybrid scaffolds: Combined the sol-gel method with 3D plotting technique. Dong Y; Liang J; Cui Y; Xu S; Zhao N Carbohydr Polym; 2018 Oct; 197():183-193. PubMed ID: 30007604 [TBL] [Abstract][Full Text] [Related]
20. Modified n-HA/PA66 scaffolds with chitosan coating for bone tissue engineering: cell stimulation and drug release. Zou Q; Li J; Niu L; Zuo Y; Li J; Li Y J Biomater Sci Polym Ed; 2017 Sep; 28(13):1271-1285. PubMed ID: 28402219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]