BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30600181)

  • 1. Conformational diversity in the intrinsically disordered HIV-1 Tat protein induced by zinc and pH.
    Kunihara T; Hayashi Y; Arai M
    Biochem Biophys Res Commun; 2019 Feb; 509(2):564-569. PubMed ID: 30600181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fab'-induced folding of antigenic N-terminal peptides from intrinsically disordered HIV-1 Tat revealed by X-ray crystallography.
    Serrière J; Dugua JM; Bossus M; Verrier B; Haser R; Gouet P; Guillon C
    J Mol Biol; 2011 Jan; 405(1):33-42. PubMed ID: 21035463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The folding competence of HIV-1 Tat mediated by interaction with TAR RNA.
    Kim JM; Choi HS; Seong BL
    RNA Biol; 2017 Jul; 14(7):926-937. PubMed ID: 28418268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physicochemical studies on the structural stability of the HIV-1 vaccine candidate recombinant Tat protein.
    Falahati Z; Mahdavi A; Hassani L
    Int J Biol Macromol; 2020 Dec; 164():403-414. PubMed ID: 32693138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Regulation by Intrinsically Disordered Regions: A Role for Subdomains in the IDR of the HIV-1 Rev Protein.
    Faust O; Grunhaus D; Shimshon O; Yavin E; Friedler A
    Chembiochem; 2018 Aug; 19(15):1618-1624. PubMed ID: 29791766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of microtubule assembly by the HIV-1 Tat protein is strongly dependent on zinc binding to Tat.
    Egelé C; Barbier P; Didier P; Piémont E; Allegro D; Chaloin O; Muller S; Peyrot V; Mély Y
    Retrovirology; 2008 Jul; 5():62. PubMed ID: 18613978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tat peptide-calmodulin binding studies and bioinformatics of HIV-1 protein-calmodulin interactions.
    McQueen P; Donald LJ; Vo TN; Nguyen DH; Griffiths H; Shojania S; Standing KG; O'Neil JD
    Proteins; 2011 Jul; 79(7):2233-46. PubMed ID: 21560167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UV and X-ray structural studies of a 101-residue long Tat protein from a HIV-1 primary isolate and of its mutated, detoxified, vaccine candidate.
    Foucault M; Mayol K; Receveur-Bréchot V; Bussat MC; Klinguer-Hamour C; Verrier B; Beck A; Haser R; Gouet P; Guillon C
    Proteins; 2010 May; 78(6):1441-56. PubMed ID: 20034112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High yield expression and purification of HIV-1 Tat1-72 for structural studies.
    Shojania S; Henry GD; Chen VC; Vo TN; Perreault H; O'Neil JD
    J Virol Methods; 2010 Mar; 164(1-2):35-42. PubMed ID: 19941902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic disorder and function of the HIV-1 Tat protein.
    Shojania S; O'Neil JD
    Protein Pept Lett; 2010 Aug; 17(8):999-1011. PubMed ID: 20450479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HIV-1 Tat Protein Enters Dysfunctional Endothelial Cells via Integrins and Renders Them Permissive to Virus Replication.
    Cafaro A; Barillari G; Moretti S; Palladino C; Tripiciano A; Falchi M; Picconi O; Pavone Cossut MR; Campagna M; Arancio A; Sgadari C; Andreini C; Banci L; Monini P; Ensoli B
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33396807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Insights into the Mechanism of HIV-1 Tat Secretion from the Plasma Membrane.
    Ghanam RH; Eastep GN; Saad JS
    J Mol Biol; 2023 Jan; 435(2):167880. PubMed ID: 36370804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HIV-1 Tat is a natively unfolded protein: the solution conformation and dynamics of reduced HIV-1 Tat-(1-72) by NMR spectroscopy.
    Shojania S; O'Neil JD
    J Biol Chem; 2006 Mar; 281(13):8347-56. PubMed ID: 16423825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homonuclear 1H NMR and circular dichroism study of the HIV-1 Tat Eli variant.
    Watkins JD; Campbell GR; Halimi H; Loret EP
    Retrovirology; 2008 Sep; 5():83. PubMed ID: 18808674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding.
    Arai M; Sugase K; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):9614-9. PubMed ID: 26195786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acid-induced molten globule state of a fully active mutant of human interleukin-6.
    De Filippis V; de Laureto PP; Toniutti N; Fontana A
    Biochemistry; 1996 Sep; 35(35):11503-11. PubMed ID: 8784206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tits and bits of HIV Tat protein.
    Johri MK; Mishra R; Chhatbar C; Unni SK; Singh SK
    Expert Opin Biol Ther; 2011 Mar; 11(3):269-83. PubMed ID: 21204735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of molten globule state of cytochrome c at alkaline, native and acidic pH induced by butanol and SDS.
    Naeem A; Khan RH
    Int J Biochem Cell Biol; 2004 Nov; 36(11):2281-92. PubMed ID: 15313473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of acid denaturation of proteins: intermediates and unfolded states.
    Fink AL; Calciano LJ; Goto Y; Kurotsu T; Palleros DR
    Biochemistry; 1994 Oct; 33(41):12504-11. PubMed ID: 7918473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Dynamic Landscape of the Full-Length HIV-1 Transactivator of Transcription.
    To V; Dzananovic E; McKenna SA; O'Neil J
    Biochemistry; 2016 Mar; 55(9):1314-25. PubMed ID: 26866386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.