BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30600292)

  • 21. Ornithine phenylacetate revisited.
    Jover-Cobos M; Noiret L; Sharifi Y; Jalan R
    Metab Brain Dis; 2013 Jun; 28(2):327-31. PubMed ID: 23456516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Progressive resistance training prevents loss of muscle mass and strength in bile duct-ligated rats.
    Aamann L; Ochoa-Sanchez R; Oliveira M; Tremblay M; Bémeur C; Dam G; Vilstrup H; Aagaard NK; Rose CF
    Liver Int; 2019 Apr; 39(4):676-683. PubMed ID: 30394651
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Animal models in the study of episodic hepatic encephalopathy in cirrhosis.
    Jover R; Madaria E; Felipo V; Rodrigo R; Candela A; Compañ A
    Metab Brain Dis; 2005 Dec; 20(4):399-408. PubMed ID: 16382350
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of an experimental rat model of hyperammonemic encephalopathy and evaluation of the effects of rifaximin.
    Tamaoki S; Suzuki H; Okada M; Fukui N; Isobe M; Saito T
    Eur J Pharmacol; 2016 May; 779():168-76. PubMed ID: 26980242
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploratory investigation on nitro- and phospho-proteome cerebellum changes in hyperammonemia and hepatic encephalopathy rat models.
    Brunelli L; Campagna R; Airoldi L; Cauli O; Llansola M; Boix J; Felipo V; Pastorelli R
    Metab Brain Dis; 2012 Mar; 27(1):37-49. PubMed ID: 22083566
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bile-duct ligation renders the brain susceptible to hypotension-induced neuronal degeneration: Implications of ammonia.
    Clément MA; Bosoi CR; Oliveira MM; Tremblay M; Bémeur C; Rose CF
    J Neurochem; 2021 May; 157(3):561-573. PubMed ID: 33382098
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ammonia-lowering strategies for the treatment of hepatic encephalopathy.
    Rose CF
    Clin Pharmacol Ther; 2012 Sep; 92(3):321-31. PubMed ID: 22871998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pharmacotherapy for hyperammonemia.
    Hadjihambi A; Khetan V; Jalan R
    Expert Opin Pharmacother; 2014 Aug; 15(12):1685-95. PubMed ID: 25032885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brain alanine formation as an ammonia-scavenging pathway during hyperammonemia: effects of glutamine synthetase inhibition in rats and astrocyte-neuron co-cultures.
    Dadsetan S; Kukolj E; Bak LK; Sørensen M; Ott P; Vilstrup H; Schousboe A; Keiding S; Waagepetersen HS
    J Cereb Blood Flow Metab; 2013 Aug; 33(8):1235-41. PubMed ID: 23673435
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lactulose decreases neuronal activation and attenuates motor behavioral deficits in hyperammonemic rats.
    Mendes NF; Mariotti FFN; de Andrade JS; de Barros Viana M; Céspedes IC; Nagaoka MR; Le Sueur-Maluf L
    Metab Brain Dis; 2017 Dec; 32(6):2073-2083. PubMed ID: 28875419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of portacaval anastomosis on glutamine synthetase protein and gene expression in brain, liver and skeletal muscle.
    Desjardins P; Rao KV; Michalak A; Rose C; Butterworth RF
    Metab Brain Dis; 1999 Dec; 14(4):273-80. PubMed ID: 10850554
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cerebral cortex ammonia and glutamine metabolism in two rat models of chronic liver insufficiency-induced hyperammonemia: influence of pair-feeding.
    Dejong CH; Deutz NE; Soeters PB
    J Neurochem; 1993 Mar; 60(3):1047-57. PubMed ID: 8094741
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hyperammonemia compromises glutamate metabolism and reduces BDNF in the rat hippocampus.
    Galland F; Negri E; Da Ré C; Fróes F; Strapazzon L; Guerra MC; Tortorelli LS; Gonçalves CA; Leite MC
    Neurotoxicology; 2017 Sep; 62():46-55. PubMed ID: 28506823
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increased brain lactate is central to the development of brain edema in rats with chronic liver disease.
    Bosoi CR; Zwingmann C; Marin H; Parent-Robitaille C; Huynh J; Tremblay M; Rose CF
    J Hepatol; 2014 Mar; 60(3):554-60. PubMed ID: 24512824
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 2021 ISHEN guidelines on animal models of hepatic encephalopathy.
    DeMorrow S; Cudalbu C; Davies N; Jayakumar AR; Rose CF
    Liver Int; 2021 Jul; 41(7):1474-1488. PubMed ID: 33900013
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pathophysiology of hepatic encephalopathy and future treatment options.
    González-Regueiro JA; Higuera-de la Tijera MF; Moreno-Alcántar R; Torre A
    Rev Gastroenterol Mex (Engl Ed); 2019; 84(2):195-203. PubMed ID: 31014748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systemic oxidative stress is implicated in the pathogenesis of brain edema in rats with chronic liver failure.
    Bosoi CR; Yang X; Huynh J; Parent-Robitaille C; Jiang W; Tremblay M; Rose CF
    Free Radic Biol Med; 2012 Apr; 52(7):1228-35. PubMed ID: 22300646
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Medium-chain triglycerides supplement therapy with a low-carbohydrate formula can supply energy and enhance ammonia detoxification in the hepatocytes of patients with adult-onset type II citrullinemia.
    Hayasaka K; Numakura C; Yamakawa M; Mitsui T; Watanabe H; Haga H; Yazaki M; Ohira H; Ochiai Y; Tahara T; Nakahara T; Yamashiki N; Nakayama T; Kon T; Mitsubuchi H; Yoshida H
    J Inherit Metab Dis; 2018 Sep; 41(5):777-784. PubMed ID: 29651749
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The bile duct ligated rat: A relevant model to study muscle mass loss in cirrhosis.
    Bosoi CR; Oliveira MM; Ochoa-Sanchez R; Tremblay M; Ten Have GA; Deutz NE; Rose CF; Bemeur C
    Metab Brain Dis; 2017 Apr; 32(2):513-518. PubMed ID: 27981407
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Muscle ammonia and glutamine exchange during chronic liver insufficiency in the rat.
    Dejong CH; Deutz NE; Soeters PB
    J Hepatol; 1994 Sep; 21(3):299-307. PubMed ID: 7836697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.